por Ana Maria da Silva » Qua Out 02, 2013 10:18
Julgue o crescimento e decrescimento da função f(x)=

:
a- f é crescente para x é maior que 0
b- f é crescente para x é maior que 0
c- f é crescente para 0 menor que x menor ou igual a 1
d- f é decrescente para 0 menor que x menor que 1
e- f é decrescente para x menor ou igual a 1
como consigo resolver!
-
Ana Maria da Silva
- Usuário Parceiro

-
- Mensagens: 83
- Registrado em: Qua Mar 27, 2013 15:09
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: licenciatura em matemática
- Andamento: cursando
por Bravim » Qui Out 03, 2013 05:32
Bem você deve derivar f(x):

a) a função não será sempre crescente visto que em x=1 temos inclinação zero e para 0<x<1 temos a função decrescente.
b) mesma coisa da letra a
c) a função será decrescente neste intervalo
d) exatamente.
e)bem, neste caso temos uma descontinuidade em zero, o que torna sem sentido falar de inclinação neste ponto. Para x<0, teremos simetria, -1<x<0 a função é decrescente e em x<-1 a função será crescente.


Aqui segue o gráfico:
http://www.wolframalpha.com/input/?i=x%5E2-2logx
-

Bravim
- Usuário Parceiro

-
- Mensagens: 57
- Registrado em: Qui Out 03, 2013 03:28
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Intervalos de crescimento e decrescimento da função
por valeuleo » Ter Jun 21, 2011 21:50
- 3 Respostas
- 3438 Exibições
- Última mensagem por LuizAquino

Ter Jun 21, 2011 22:44
Cálculo: Limites, Derivadas e Integrais
-
- Calcular intervalos de crescimento e decrescimento da função
por Eduardooitavo » Sáb Jun 09, 2012 18:06
- 1 Respostas
- 2523 Exibições
- Última mensagem por MarceloFantini

Sáb Jun 09, 2012 19:32
Cálculo: Limites, Derivadas e Integrais
-
- crescimento e decrescimento
por joandro » Dom Abr 13, 2014 11:30
- 1 Respostas
- 1462 Exibições
- Última mensagem por alienante

Ter Abr 29, 2014 17:27
Cálculo: Limites, Derivadas e Integrais
-
- Intervalo de crescimento e decrescimento
por valeuleo » Qui Jun 23, 2011 12:02
- 4 Respostas
- 2834 Exibições
- Última mensagem por LuizAquino

Sáb Jun 25, 2011 16:50
Cálculo: Limites, Derivadas e Integrais
-
- [DERIVADA] crescimento e decrescimento
por fabriel » Ter Set 25, 2012 02:57
- 2 Respostas
- 1920 Exibições
- Última mensagem por fabriel

Ter Set 25, 2012 12:57
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 10 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.