• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivação implicita.

Derivação implicita.

Mensagempor cardoed001 » Sáb Set 28, 2013 21:56

Boa noite pessoal.

Alguém poderia me explicar como resolvo a seguinte derivada (dY/dX):

(2x-3y)^3=5y-2x

Não consego desenvolver por causa deste 3y no mesmo parenteses do 2x.

Desde já grato pela ajuda.
cardoed001
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Dom Set 15, 2013 00:40
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecânica
Andamento: cursando

Re: Derivação implicita.

Mensagempor Man Utd » Sáb Set 28, 2013 23:21

cardoed001 escreveu:Boa noite pessoal.

Alguém poderia me explicar como resolvo a seguinte derivada (dY/dX):

(2x-3y)^3=5y-2x

Não consego desenvolver por causa deste 3y no mesmo parenteses do 2x.

Desde já grato pela ajuda.


\\\\ ((2x-3y)^3)^{\prime}=(5y-2x)^{\prime} \\\\ 3(2x+3y)^{2}*(2x-3y)^{\prime}=5y^{\prime}-2 \\\\ 3(2x+3y)^{2}*(2-3y^{\prime})=5y^{\prime}-2 \\\\ 6(2x+3y)^{2}-9y^{\prime}(2x+3y)^{2}=5y^{\prime}-2 \\\\ -9y^{\prime}(2x+3y)^{2}-5y^{\prime}=-2-6(2x+3y)^{2} \\\\ 9y^{\prime}(2x+3y)^{2}+5y^{\prime}=2+6(2x+3y)^{2} \\\\ y^{\prime}=\frac{2+6(2x+3y)^{2}}{9*(2x+3y)^{2}+5}
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: Derivação implicita.

Mensagempor cardoed001 » Dom Set 29, 2013 12:28

Bom dia,

Acabei de sair do poço com essa resposta.

Mais uma vez muitíssimo obrigado.
cardoed001
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Dom Set 15, 2013 00:40
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecânica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}