• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral Definida]Trabalho

[Integral Definida]Trabalho

Mensagempor may » Seg Set 09, 2013 17:25

Boa tarde!
Estou tendo dificuldade em um exercicio sobre o trabalho realizado por uma mola.
1)Uma força de 8N estica uma mola,cujo comprimento natural é 4m,em 50cm.Ache o trabalho realizado ao esticar a mola do seu comprimento na natural até 5m.
Minha resposta:
F=-kx,sendo assim k=-16
W=(Integral de 4 até 5) -16x dx
W=-8x^2( de 4-5)
w=-72J
Porem a reposta do gabarito é 8J.
Agradeço se alguém ajudar a encontrar meu erro.
Obs:Desculpa não usar o editor de formulas,mas ele estava dando erro.
:)
may
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Seg Jun 20, 2011 19:28
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia de energias
Andamento: cursando

Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.