• Anúncio Global
    Respostas
    Exibições
    Última mensagem

CALCULO

CALCULO

Mensagempor Victor Gabriel » Qua Jul 17, 2013 12:17

Pessoal tem como alguém mim ajudar com esta questão.

Questão: Encontre a maior e a menor distância de um ponto situado sobre a elipse \frac{{x}^{2}}{4}+{y}^{2}=1 à reta x+y-4=0
Victor Gabriel
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Dom Abr 14, 2013 20:29
Formação Escolar: ENSINO MÉDIO
Área/Curso: estudante
Andamento: cursando

Re: CALCULO

Mensagempor Russman » Qua Jul 17, 2013 19:27

A grandeza de interesse a ser minimizada ou maximizada é a distância entre as curvas. Assim, o primeiro passo é determiná-la em função dos parâmetros das mesmas.

A distância entre dois pontos (x_1,y_1) e (x_2,y_2) é dada por

d = \sqrt{\left (x_2 - x_1  \right )^2 + \left ( y_2 - y_1 \right )^2} .

Como um dos pontos deve pertencer a elipse e o outro a reta, então podemos relacionar as coordenadas, escolhendo, por exemplo, o subíndice 1 para a reta e 2 para a elipse, da seguinte forma

\left\{\begin{matrix}
x_2+y_2-4=0 \\ 
\frac{x^2_2}{4} + y_2^2 = 1
\end{matrix}\right. \Rightarrow \left\{\begin{matrix}
y_1 = 4- x_1 \\ 
y_2 = \sqrt{1 - \left ( \frac{x_2^2}{4} \right )}
\end{matrix}\right.

de modo que

d = \sqrt{\left (x_2 - x_1  \right )^2 + \left (  \sqrt{1 - \left ( \frac{x_2^2}{4} \right )} - 4+ x_1 \right )^2}

Agora não sei se o ponto sobre a elipse é um qualquer, um específico(não parece ser pelo enunciado) ou se é o par de pontos que minimizam ou maximizam a função distância não localmente mas globalmente. Se sim, então temos uma função de duas variáveis e as respectivas derivadas parciais de cada variável serão nulas nos pontos de máximo e mínimo.

Uma outra alternativa seria considerar que a distância entre as curvas deveria ser uma reta PERPENDICULAR a reta dada. Isto simplificaria bastante as coisas. Veja que, nesse caso, a distância entre um ponto (x,y) qualquer pertencente a elipse e a reta de equação ax+by+c=0 é dada por

d= \frac{1}{\sqrt{a^2+b^2}}\left | ax+by+c \right |

e dada reta, então

d= \frac{1}{\sqrt{2}}\left | x+y-4 \right | .

Como o ponto deve pertencer a elipse, temos a relação y = \sqrt{1 - \left ( \frac{x^2}{4} \right )} e, portanto,

d= \frac{1}{\sqrt{2}}\left | x+ \sqrt{1 - \left ( \frac{x^2}{4} \right )}-4 \right |.

Agora temos a distância entre as curvas em função da coordenada x que, como varia de -2 a 2 e ,nesse intervalo, o valor que está dentro do módulo é negativo podemos nos livrar dele colocando um sinal menos na frente da função.

d(x)= -\frac{1}{\sqrt{2}} \left (x+ \sqrt{1 - \left ( \frac{x^2}{4} \right )}-4  \right )

ou

d(x)= -\frac{1}{\sqrt{2}} \left (x+ \frac{1}{2}\sqrt{4 -x^2}-4  \right ).

Agora para extremá-la temos de calcular qual valor de x que zera a derivada primeira.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D