• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Tenho prova no sábado, me ajudem galera!

Tenho prova no sábado, me ajudem galera!

Mensagempor arthurvct » Qua Jul 10, 2013 16:48

1- Mostre que 2arcsen(x)-arccos(1-2x^2)=0. Para todo x tal que |x|<=1.



2-Determine os valores máximos e mínimos LOCAIS E ABSOLUTOS da função f(x)=|x^2-8x+12| no intervalo [0, 5].
arthurvct
 

outra questão

Mensagempor arthurvct » Qua Jul 10, 2013 16:51

faltou essa galera:

3-O raio de uma esfera é de 20cm. Estimar, através de diferenciais, o valor do volume com que fica a esfera ao aplicarmos uma camada de tinta de 0,1cm.
arthurvct
 


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.