• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivadas de funções Exponenciais

Derivadas de funções Exponenciais

Mensagempor Ana Maria da Silva » Dom Jun 30, 2013 13:33

Indique os valores de x\epsilon\left[0,2\pi \right] , nos quais a reta tangente ao gráfico de f(x)=x+2 sen(x) no ponto (x,f(x)) é horizontal.

a- \frac{5\pi}{3}
b- \frac{3\pi}{4}\frac{3\pi}{4}
c- \frac{4\pi}{3}
d- \frac{\pi}{2}
e- \frac{2\pi}{3}

Como desenvolver?
Ana Maria da Silva
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 83
Registrado em: Qua Mar 27, 2013 15:09
Formação Escolar: ENSINO MÉDIO
Área/Curso: licenciatura em matemática
Andamento: cursando

Re: Derivadas de funções Exponenciais

Mensagempor Molina » Seg Jul 01, 2013 23:02

Boa noite, Ana Maria.

Primeiramente calcule a derivada da função f. Depois iguale a 0, pois você quer que a reta tangente esteja na horizontal.

Qualquer dúvida, avise! :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Derivadas de funções Exponenciais

Mensagempor Ana Maria da Silva » Sex Jul 12, 2013 21:04

Não consegui resolver!
Ana Maria da Silva
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 83
Registrado em: Qua Mar 27, 2013 15:09
Formação Escolar: ENSINO MÉDIO
Área/Curso: licenciatura em matemática
Andamento: cursando

Re: Derivadas de funções Exponenciais

Mensagempor Molina » Sex Jul 12, 2013 22:27

Boa noite.

Ana Maria da Silva escreveu:Não consegui resolver!


f(x)=x+2 sen(x)

f'(x)=(x+2 sen(x))' = 1 + 2cos(x)

Logo, a derivada da função f é: 1 + 2cos(x)

Igualando a zero: 1 + 2cos(x) = 0 \Rightarrow cos(x) = \frac{-1}{2}

Agora você consegue identificar quais os ângulos que o cosseno resulta em \frac{-1}{2}? :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.