• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Teorema fundamental do calculo

Teorema fundamental do calculo

Mensagempor Thyago Quimica » Dom Jun 16, 2013 16:38

Boa Tarde pessoal resolvi um lista de exercícios de integrais, mais fiquei preso nessas...:

a) \int_{1}^{4}\frac{1+x}{\sqrt[]{x}} dx


b)\int_{1}^{2}\frac{1+{x}^{2}}{{x}^{4}} dx


c)\int_{1}^{2}2x{e}^{{x}^{2}} dx

Desenvolvo todo o calculo mais o resultado não bate com o gabarito. Quem poder ajudar nem que seja com a saida agradeço muito.
Livro: Calculo I Guidorizzi
Thyago Quimica
Usuário Ativo
Usuário Ativo
 
Mensagens: 16
Registrado em: Sáb Mai 05, 2012 17:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Química
Andamento: cursando

Re: Teorema fundamental do calculo

Mensagempor e8group » Dom Jun 16, 2013 20:12

As integrais dos itens a) e b) possuem integrando na forma (*) \frac{1+x^n}{x^p} com n,p racionais . Agora reescrevendo (*) como \frac{1}{x^p} + \frac{x^n}{x^p} = x^{-p} + x^{n-p} temos \int \frac{1+x^n}{x^p} dx  = \int x^{-p} dx + \int x^{n-p} dx para -p , n-p \neq -1 resulta \int \frac{1+x^n}{x^p} dx = \frac{x^{-p+1}}{1-p} + \frac{x^{n-p+1}}{n-p+1} +c .A última integral , pode fazer a subsituição \lambda = x^2 (porque ?) .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}