• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dúvida (derivada e função modular)

Dúvida (derivada e função modular)

Mensagempor Man Utd » Sáb Jun 15, 2013 11:03

é certo afirmar que as raízes de uma função modular se tornam bicos(pontos que não tem derivada),já que o gráfico é rebatido para cima?
nesta função |x^{3}-x| (vide o gráfico: http://www.wolframalpha.com/input/?i=ab ... 83%29-x%29 todas as raízes encontram-se bicos).
mais nesta outra função |x^{3}-x^{2}-2x|(gráfico: http://www.wolframalpha.com/input/?i=ab ... 2%29-2x%29 )não acontecem com todas as raízes e somente uma.
Dúvida:eu tenho que fazer o gráfico para descobrir os possíveis bicos?ou existe um jeito mais eficaz?
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: Dúvida (derivada e função modular)

Mensagempor e8group » Sáb Jun 15, 2013 13:24

Man Utd escreveu:é certo afirmar que as raízes de uma função modular se tornam bicos(pontos que não tem derivada),já que o gráfico é rebatido para cima?
nesta função |x^{3}-x| (vide o gráfico: http://www.wolframalpha.com/input/?i=ab ... 83%29-x%29 todas as raízes encontram-se bicos).


A função não é diferenciável nestes pontos ,segue de imediato da definição ,pois as derivadas laterias diferem .

Man Utd escreveu:mais nesta outra função |x^{3}-x^{2}-2x|(gráfico: http://www.wolframalpha.com/input/?i=ab ... 2%29-2x%29 )não acontecem com todas as raízes e somente uma.


SIm , em uma destas raízes ,as derivadas laterias são iguais o que implica a função diferenciável neste ponto .

Man Utd escreveu:Dúvida:eu tenho que fazer o gráfico para descobrir os possíveis bicos?ou existe um jeito mais eficaz?


Tome cuidado ,esta analise leva você dizer que as funções cujo gráfico não apresenta "bicos " é diferenciável ,isto não é verdade , por exemplo , f(x) = \sqrt[3]{x} não é derivável em x= 0 , o limite das retas tangente a função neste ponto é o próprio O_y , o coeficiente angular desta reta vai + \infty quado x \to 0 .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Dúvida (derivada e função modular)

Mensagempor Man Utd » Sáb Jun 15, 2013 20:10

eu tenho um exercicio assim:

Construa uma função f: R-R que seja contínua em R e derivavél em todos os pontos exceto em -1,0 e 1.

a resolução apresentada a mim foi:
(x+1).x.(x-1)----decomposição de polinomios.
x^{3}-x, então foi colocado em módulo------|x^{3}-x|,com isso as raízes apresentaram bicos na função(conforme wolfram na 1° postagem).
dúvida:Isso sempre é válido?digo uma função em módulo não vai ter derivada nos pontos que são as raízes?
att,
obrigado pela atenção.
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: Dúvida (derivada e função modular)

Mensagempor e8group » Sáb Jun 15, 2013 21:26

Você também pode pensar em 3 funções contínuas em toda a reta satisfazendo a (*) diferenciabilidade em todos os pontos exceto -1,0,1 . Logo , a soma destas funções contínuas fornecerá uma função contínua satisfazendo (*) .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Dúvida (derivada e função modular)

Mensagempor Man Utd » Dom Jun 16, 2013 10:25

vlw santhiago. :)
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: Dúvida (derivada e função modular)

Mensagempor LuizAquino » Dom Jun 16, 2013 11:24

Man Utd escreveu:é certo afirmar que as raízes de uma função modular se tornam bicos(pontos que não tem derivada),já que o gráfico é rebatido para cima?


Nem sempre é correto afirmar isso.

Por exemplo, x = 0 é uma raiz da função definida por f(x) = \left|x^3 - x^2\right|, entretanto a função não tem bico em x = 0. Analise o gráfico desta função representado abaixo.

figura1.png
figura1.png (8.93 KiB) Exibido 6854 vezes


Man Utd escreveu:nesta função |x^{3}-x| (vide o gráfico: http://www.wolframalpha.com/input/?i=ab ... 83%29-x%29 todas as raízes encontram-se bicos).
mais nesta outra função |x^{3}-x^{2}-2x|(gráfico: http://www.wolframalpha.com/input/?i=ab ... 2%29-2x%29 )não acontecem com todas as raízes e somente uma.


Errado. Na função definida por f(x) = \left|x^{3}-x^{2}-2x\right| temos bicos em todas as raízes. Para verificar isso, confira os limites abaixo (o cálculo deles fica como exercício para você):

\lim_{x\to -1^-}\dfrac{f(x) - f(-1)}{x-(-1)} = -3

\lim_{x\to -1^+}\dfrac{f(x) - f(-1)}{x-(-1)} = 3

\lim_{x\to 0^-}\dfrac{f(x) - f(0)}{x-0} = -2

\lim_{x\to 0^+}\dfrac{f(x) - f(0)}{x-0} = 2

\lim_{x\to 2^-}\dfrac{f(x) - f(2)}{x-2} = -6

\lim_{x\to 2^+}\dfrac{f(x) - f(2)}{x-2} = 6

Veja também o gráfico desta função representado abaixo.

figura2.png
figura2.png (11.88 KiB) Exibido 6854 vezes


Man Utd escreveu:Dúvida:eu tenho que fazer o gráfico para descobrir os possíveis bicos? ou existe um jeito mais eficaz?


Você pode calcular a derivada da função e analisar onde ela é descontínua. Entretanto, dependendo do caso é mais simples construir logo o gráfico.

Man Utd escreveu:eu tenho um exercicio assim:

Construa uma função f: R-R que seja contínua em R e derivavél em todos os pontos exceto em -1,0 e 1.

a resolução apresentada a mim foi:
(x+1).x.(x-1)----decomposição de polinomios.
x^{3}-x, então foi colocado em módulo------|x^{3}-x|,com isso as raízes apresentaram bicos na função(conforme wolfram na 1° postagem).
dúvida:Isso sempre é válido?digo uma função em módulo não vai ter derivada nos pontos que são as raízes?
att,


Nem sempre isso é válido, como ilustra o exemplo exibido no início deste texto.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 68 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D