• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função Gama.

Função Gama.

Mensagempor 380625 » Sáb Jun 01, 2013 16:57

Boa tarde preciso mostrar que

\int_{0}^{\infty} e^{-x4}dx = \Gamma(\dfrac{5}{4}), onde \Gamma(\dfrac{5}{4}) se trata da função Gama.

O que fiz usei a série de Maclaurin do lado esquerdo e desenvolvi alguns termos e encontrei o termo geral.

Depois integrei a série termo a termo porém não consigo achar uma relação com a função gama.

Espero que alguem possa me dar uma ajuda por ai.

Flávio Santana.
380625
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Sex Fev 18, 2011 17:38
Formação Escolar: GRADUAÇÃO
Área/Curso: Física
Andamento: cursando

Re: Função Gama.

Mensagempor e8group » Dom Jun 02, 2013 20:04

Não se está correto ,mas pensei assim :

Aceitando que (*) \Gamma(\beta) = \int_{0}^{\infty} t^{\beta -1} e^{-t}dt ,temos :

\int_{0}^{\infty} e^{-x^4}dx = \Gamma(5/4) .Pois ,fazendo a substiuição t = x^4 ,obtemos4^{-1} t^{-3/4}dt = dx .Assim ,

\int_{0}^{\infty} e^{-x^4}dx = 4^{-1} \int_{0}^{\infty} t^{-3/4}e^{-t}dt .Utilizando o método de integração por partes ,resulta


\int_{0}^{\infty} t^{-3/4}e^{-4t}dt = 4^{-1} f(t)g(t)\big|_{0}^{\infty} - 4^{-1} \int_{0}^{\infty} f'(t)g(t) dt em que :

f(t) = e^{-t},f'(t)=-e^{-t}, g'(t) = t^{-3/4} , g(t) = 4 t^{1/4} .


Daí ,

4^{-1} \int_{0}^{\infty} f'(t)g(t) dt = 4^{-1} \int_{0}^{\infty} -4 t^{1/4}e^{-t}dt = -\int_{0}^{\infty} t^{1/4}e^{-t}dt = -\int_{0}^{\infty} t^{5/4 - 1}e^{-t}dt \overset{(*)}{=} -\Gamma(5/4) .

Lembrando que \int_{0}^{\infty} t^{-3/4}e^{-4t}dt = 4^{-1} f(t)g(t)\big|_{0}^{\infty} - 4^{-1} \int_{0}^{\infty} f'(t)g(t) dt e mostrando que 4^{-1} f(t)g(t)\big|_{0}^{\infty} = 0 (deixo como exercício p/ vc) segue o resultado .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.