Achar a área entre a curva
e o eixo dos x.
e o eixo dos x.
,isto é , tomar
.Pela primeira derivada ,podemos determinar os pontos críticos da função e também estudar os intervalos de crescimento e decrescimento ,derivando a função novamente encontra-se os intervalos onde a função possui concavidade voltada para cima e para baixo .Estas informações são suficientes para esboçar o gráfico de tal curva .Sem integral é fácil ver que a área que pede-se é zero (veja geometricamente ) ,integrando de
a
isto se confirma (quais são os pontos
?)
Voltar para Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes
![\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}} \frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}](/latexrender/pictures/981987c7bcdf9f8f498ca4605785636a.png)
(dica : igualar a expressão a
e elevar ao quadrado os dois lados)