• Anúncio Global
    Respostas
    Exibições
    Última mensagem

integral substituição trigonométrica

integral substituição trigonométrica

Mensagempor samysoares » Dom Mai 26, 2013 17:13

\int_{}^{}\frac{dx}{\sqrt[]{4{x}^{2}+9}}

o resultado deveria ser:1/2ln\left|\sqrt[]{4{x}^{2}+9}+2x \right|
Mas o meu resutado não está bantendo: 1/2ln\left|\frac{\sqrt[]{4{x}^{2}+9}+2x}{3} \right|

Não sei onde estou errando, por favor me ajudem!
samysoares
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Ter Jan 08, 2013 12:42
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: integral substituição trigonométrica

Mensagempor e8group » Dom Mai 26, 2013 19:36

Não sei o que você tentou ,mas podemos resolver esta integral por substituição trigonométrica .Observe a identidade , tan^2(\theta) + 1 = sec^2(\theta) .Escrevendo o radicando 4x^2 + 9 como 9 (4x^2/9+1) = 9 \left (\left(\frac{x}{\dfrac{3}{2}}\right)^2+1\right) .Lembrando da identidade mencionada acima ,fica fácil ver que a substituição que vamos fazer é : tan(\theta) = \frac{x}{\dfrac{3}{2}} e ainda para que sec(\theta) > 0 deveremos impor -\pi/2 < \theta < \pi/2 .Como 2/3 dx = sec^2(\theta) d\theta  \implies dx = 3/2 sec^2(\theta) d\theta ,temos que :

\int \frac{dx}{\sqrt{4x^2+9}}  = \frac{1}{2} \int sec(\theta) d\theta .

P/ resolver esta integral ,basta multiplicar em cima e em baixo por sec(\theta) + tan(\theta) e realizar uma nova substituição , a =sec(\theta) + tan(\theta) .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.