por netochaves » Ter Mai 07, 2013 07:02
Pessoal, estou com duvida para resolver a derivada desta equacao:
At’(r) = 4. ?. r + (4.?.H.r)/R+(2.?.R.H )/R
Qual é a derivada segunda correta dela?
Estou em duvida se é: 4.? + 4.?.H/R + 2.?.R.H/R ou se souberem a correta derivada, me ajudem.
E depois calcular as condições quando R < 2R, R = 2R e R > 2R.
-
netochaves
- Usuário Ativo

-
- Mensagens: 11
- Registrado em: Qui Abr 04, 2013 17:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Civil
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Ache a derivada segunda e resolva a equação f''(x)=0
por marcela » Dom Jun 22, 2008 13:41
- 1 Respostas
- 3469 Exibições
- Última mensagem por admin

Dom Jun 22, 2008 13:52
Cálculo: Limites, Derivadas e Integrais
-
- segunda derivada
por jmario » Sex Mai 07, 2010 22:25
- 2 Respostas
- 2601 Exibições
- Última mensagem por Molina

Sáb Mai 08, 2010 14:00
Cálculo: Limites, Derivadas e Integrais
-
- [derivada segunda]
por nayra suelen » Qua Mai 30, 2012 13:38
- 2 Respostas
- 1516 Exibições
- Última mensagem por nayra suelen

Qua Mai 30, 2012 14:42
Cálculo: Limites, Derivadas e Integrais
-
- Derivada segunda
por barbara-rabello » Qui Out 18, 2012 12:22
- 3 Respostas
- 1730 Exibições
- Última mensagem por e8group

Qui Out 18, 2012 18:20
Cálculo: Limites, Derivadas e Integrais
-
- Derivada da primeira e derivada da segunda
por Laisa » Ter Fev 26, 2019 17:02
- 1 Respostas
- 5546 Exibições
- Última mensagem por DanielFerreira

Qui Set 05, 2019 23:28
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes
Assunto:
Exercicios de polinomios
Autor:
shaft - Qua Jun 30, 2010 17:30
Então, o exercicio pede para encontrar

.
Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !
Assunto:
Exercicios de polinomios
Autor:
Douglasm - Qua Jun 30, 2010 17:53
Bom, se desenvolvermos isso, encontramos:
Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):
Somando a primeira e a segunda equação:
Finalmente:
Até a próxima.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.