por Pinheiro Rosa Victor » Qui Mai 02, 2013 11:11
[OTIMIZAÇÃO] Uma caixa d’agua no formato de um cilindro circular reto de raio r e altura h será construída em cima de um prédio onde o teto tem formato de um cone de revolução com raio R e altura H, encontrE as dimensões de r (em função de R e H) que maximiza a área total da superfície da caixa d’ água (inclusive a base inferior). Para tanto, é necessário que você esteja capacitado com conhecimentos a serem aplicados.
Logo, nesse contexto, você se depara com os problemas de otimização que são chamados assim pelo fato de que as soluções encontradas com esta técnica são as melhores possíveis para cada caso, ou seja, resolver estes problemas com as técnicas de máximos e mínimos significa encontrar a solução ótima para eles.
Para resolvê-los, é necessário converter as afirmações em linguagem matemática, mediante a introdução de fórmulas, funções ou equações. Os tipos de aplicação são ilimitados, tornando-se, assim, difícil enunciar regras específicas para a determinação de soluções.
• Tem como solucionar a situação sem a aplicação das derivadas?
• Qual as dimensões de r (em função de R e H) que maximiza a área total da superfície da caixa d’ água (inclusive a base inferior)?
• Qual a solução gráfica para o case?
-
Pinheiro Rosa Victor
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Qui Mai 02, 2013 11:05
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia civil
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Otimizacao
por Taisa » Sex Nov 12, 2010 13:53
- 1 Respostas
- 2140 Exibições
- Última mensagem por MarceloFantini

Sex Nov 12, 2010 14:36
Cálculo: Limites, Derivadas e Integrais
-
- Otimização
por AlbertoAM » Sáb Mai 14, 2011 21:36
- 4 Respostas
- 2478 Exibições
- Última mensagem por AlbertoAM

Dom Mai 15, 2011 19:23
Cálculo: Limites, Derivadas e Integrais
-
- Otimização
por elbert005 » Ter Mai 31, 2011 15:41
- 4 Respostas
- 3619 Exibições
- Última mensagem por LuizAquino

Ter Mai 31, 2011 18:08
Cálculo: Limites, Derivadas e Integrais
-
- Otimizacao !!!!!!
por andersoneng » Qua Jun 27, 2012 12:26
- 7 Respostas
- 5260 Exibições
- Última mensagem por andersoneng

Qui Jun 28, 2012 10:24
Cálculo: Limites, Derivadas e Integrais
-
- Otimização
por Jhonata » Seg Fev 25, 2013 19:24
- 1 Respostas
- 1405 Exibições
- Última mensagem por Russman

Seg Fev 25, 2013 20:28
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.