• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral por substituição trigonométrica.

Integral por substituição trigonométrica.

Mensagempor ClaudioSP » Qui Out 08, 2009 12:25

Bom dia.

Estou com algumas duvida nessa integral por substituição trigonométrica.

\int\sqrt{\frac{4}{{x}^{4}-{x}^{2}}}dx

Minha duvida é a seguinte, o caso que irei usar, é o caso 1 \sqrt{{a}^{2}-{b}^{2}*{u}^{2}} ou o caso 2 \sqrt{{b}^{2}*{u}^{2}-{a}^{2}}.

Escolhido um dos casos, quem chamarei de a, b e u?

Agradeço a ajuda.

Claudio M. Ribeiro
ClaudioSP
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Out 07, 2009 17:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Prod Mecanica
Andamento: cursando

Re: Integral por substituição trigonométrica.

Mensagempor ClaudioSP » Qui Out 08, 2009 14:25

Eu de novo, cheguei a isso será que está correto isso?
\int\frac{\sqrt{4}}{\sqrt{{x}^{4}-{x}^{2}}}dx = \int\frac{\sqrt{4}}{\sqrt{{x}^{2}*\left({x}^{2}-1 \right)}}dx

\int\frac{\sqrt{4}}{\sqrt{{x}^{2}}*\sqrt{{x}^{2}-1}}dx = \int\frac{2}{x*\sqrt{{x}^{2}-1}}dx

chegando a essa integra,l resolvi assim:

{a}^{2}= {1}^{2} \Leftrightarrow a =1

{b}^{2}= {1}^{2} \Leftrightarrow b =1

{u}^{2}= {x}^{2} \Leftrightarrow x =u

u = \frac{a}{b}* sec\theta \Leftrightarrow u = x = sec\theta

dx = (sec\theta)' = sec\theta * tg\theta d\theta

x = sec\theta

\sqrt{{x}^{2}-1}= a*tg\theta=tg\theta

Montando a nova integral:

\int \frac{2}{sec\theta*tg\theta}*sec\theta*tg\theta d\theta = 2\int \frac{sec\theta*tg\theta}{sec\theta*tg\theta} d\theta

Isso estaria correto?
ClaudioSP
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Out 07, 2009 17:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Prod Mecanica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?