• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral

Integral

Mensagempor Viviani » Ter Abr 16, 2013 18:36

\int_{}^{}\frac{dx}{4+3{x}^{2}}
Viviani
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Qua Jan 09, 2013 13:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Integral

Mensagempor young_jedi » Ter Abr 16, 2013 20:57

\int\frac{dx}{4+3x^2}=\frac{1}{4}\int\frac{1}{1+\frac{3x^2}{4}}dx

=\frac{1}{4}\int\frac{1}{1+\left(\frac{\sqrt3}{2}x\right)^2}dx

u=\frac{\sqrt3x}{2}

du=\frac{\sqrt3}{2}dx

=\frac{1}{4}\int\frac{1}{1+u^2}.\frac{2}{\sqrt3}du

=\frac{1}{4}.\frac{2}{\sqrt3}.\int\frac{1}{1+u^2}du

temos que

\int\frac{1}{1+u^2}du=arctg(u)

tente proseguir daqui e comente se tiver duvidas
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Integral

Mensagempor Viviani » Qua Abr 17, 2013 19:50

Consegui entender, muito obrigada mesmo :-D
Viviani
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Qua Jan 09, 2013 13:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}