• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[CALCULO I] Limites e Continuidade.

[CALCULO I] Limites e Continuidade.

Mensagempor Jefferson_mcz » Sex Mar 29, 2013 19:28

Usando as definições de limites e continuidade como mostrar que a função é continua no intervalo dado ??

G(x) = 2 \frac{}{}\sqrt[]{3-x}, (-?,3]

F(x) = \frac{2x+3}{x-2}, (2,?)
Jefferson_mcz
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Sáb Mar 16, 2013 11:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: [CALCULO I] Limites e Continuidade.

Mensagempor e8group » Sex Mar 29, 2013 21:34

Uma função é contínua se ,e somente se , elá é contínua em todo ponto de seu domínio . Dica : tome as funções ,

f_1(x) =3-x, f_2(x) = 2\sqrt{x} e defina f(x) = f_2 (f_1(x))  ,  D_{f} = D_{f_1} \cap Im_{f_2} = (-\infty , 3] . Mostre que se f_1 e f_2 forem contínuas , f também o é .

Tente concluir ...
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [CALCULO I] Limites e Continuidade.

Mensagempor Jefferson_mcz » Sex Mar 29, 2013 21:49

Certo, mais oq não entendo é: Pra uma Função ser continua num dado intervalo ela tem que ser continua em seus pontos do intervalo, então lim x->a tem que ser igual a f(a) certo ? dai no primeiro caso faço fazer o Lim x->-? e o Lim x-> 3, dai se ambos valores foram iguais a f(-?) e f(3) a função é continua, mais f(-?) não existe então como a função é continua no intervalo ? ja no segundo caso faço o mesmo Lim x-> 2 e Lim x->? e se forem iguais a f(2) e f(?) então é continua, sendo que o Lim x->2 é igual a f(2) blz, mais e o lim x->?, que nesse caso não existe então como a função é continua no intervalo dado ? e em relação ao intervalo ser aberto ou fechado tem algum problema ?
Jefferson_mcz
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Sáb Mar 16, 2013 11:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: [CALCULO I] Limites e Continuidade.

Mensagempor e8group » Sex Mar 29, 2013 22:04

Para mostra que f é contínua temos que impor que para todo c,x \in D_f , \forall \epsilon > 0 , \exists \delta > 0 (correspondente de \epsilon ) tal que torne verdadeira a seguinte afirmação :

" |x-c| < \delta \implies  |f(x) - f(c)| < \epsilon " ...
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}