• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral] Arco tangente

[Integral] Arco tangente

Mensagempor KleinIll » Seg Mar 25, 2013 13:27

\int_{}^{}\frac{dy}{{y}^{2}+1}

Resultado: {tan}^{-1}\left(y \right)

Por favor, alguém pode explicar com detalhes pelo menos o princípio básico da resolução desta integral?
??? ?? ? ????, ? ? ??????.
Avatar do usuário
KleinIll
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 46
Registrado em: Qua Out 31, 2012 14:17
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia Química
Andamento: formado

Re: [Integral] Arco tangente

Mensagempor marinalcd » Seg Mar 25, 2013 18:36

Seja x = arctg y, então: y = tg x

Derivando implicitamente em relação a y, temos que:

1 = {sec}^{2}x . \frac{dx}{dy} \rightarrow \frac{dx}{dy} = \frac{1}{{sec}^{2}}

{sec}^{2}x = \frac{1}{{cos}^{2}x} = 1 + {tg}^{2}x

e 1 + {tg}^{2}x = 1 + \frac{{sen}^{2}x}{{cos}^{2}x} = \frac{{cos}^{2}x + {sen}^{2}x}{{cos}^{2}x} = \frac{1}{{cos}^{2}x}

Portanto \frac{dx}{dy} = \frac{1}{1 + {tg}^{2}x}

Como tg x = y : \frac{dx}{dy} = \frac{1}{1+{y}^{2}}

Ou seja, é a função cuja a derivada é o arctg y.

Espero que tenha entendido!

Se continuar com dúvidas poste aqui.

Abraços
marinalcd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 143
Registrado em: Sex Abr 27, 2012 21:25
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: [Integral] Arco tangente

Mensagempor KleinIll » Seg Mar 25, 2013 19:07

Obrigado!
??? ?? ? ????, ? ? ??????.
Avatar do usuário
KleinIll
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 46
Registrado em: Qua Out 31, 2012 14:17
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Engenharia Química
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}