• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dica de resolução de integral

Dica de resolução de integral

Mensagempor Amorais » Dom Mar 24, 2013 20:34

Tenho essas questões que estou tentando resolver
já tentei usar integração por partes e por substituição.

Alguém pode me dá uma dica ?

A resposta dela já vem logo abaixo


Imagem
Amorais
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Mar 24, 2013 20:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Mecânica.
Andamento: cursando

Re: Dica de resolução de integral

Mensagempor nakagumahissao » Dom Mar 24, 2013 20:58

Tente fazer:

x = \sin \theta

Mais para a frente, use:

\tan^{2} \theta = sec^{2} \theta - 1

Creio que isto deve ajudar.
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 385
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando

Re: Dica de resolução de integral

Mensagempor LuizAquino » Dom Mar 24, 2013 21:16

Amorais escreveu:Tenho essas questões que estou tentando resolver
já tentei usar integração por partes e por substituição.

Alguém pode me dá uma dica ?

A resposta dela já vem logo abaixo

anexo.jpg
anexo.jpg (8.51 KiB) Exibido 4260 vezes


Usando as substituições u = x^2 + 1 e du = 2x\,dx, temos que:

\int \dfrac{x^3}{\sqrt[3]{x^2 + 1}}\, dx = \int \dfrac{x^2\cdot x}{\sqrt[3]{x^2 + 1}}\, dx

= \dfrac{1}{2}\int \dfrac{u - 1}{\sqrt[3]{u}}\, du

= \dfrac{1}{2}\int \dfrac{u}{\sqrt[3]{u}}\, du - \dfrac{1}{2} \int \dfrac{1}{\sqrt[3]{u}}\,du

= \dfrac{1}{2}\int u^{\frac{2}{3}}\, du - \dfrac{1}{2} \int u^{-\frac{1}{3}}\,du

Agora tente concluir o exercício a partir daí.

Observação 1

O gabarito apresentado contém um erro. Na verdade, o correto será:

\int \dfrac{x^3}{\sqrt[3]{x^2 + 1}}\, dx = \dfrac{3}{2} \left[\dfrac{\left(x^2 + 1\right)^{\frac{5}{3}}}{5} - \dfrac{\left(x^2 + 1\right)^{\frac{2}{3}}}{2}\right] + C

Observação 2

Por favor, antes de postar um tópico leia as Regras deste Fórum. Em especial, vide a regra 3.

Nós recomendamos também que você leia o tópico abaixo:

DICA: Escrevendo Fórmulas com LaTeX via BBCode
viewtopic.php?f=9&t=74
lcmaquino.org | youtube.com/LCMAquino | facebook.com/Canal.LCMAquino | @lcmaquino | +LCMAquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2651
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Dica de resolução de integral

Mensagempor Amorais » Dom Mar 24, 2013 21:37

Obrigado amigos LuizAquino, nakagumahissao.
Me decupem pelo erro na postagem.
Amorais
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Mar 24, 2013 20:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Mecânica.
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}