• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integrais Imediatas

Integrais Imediatas

Mensagempor mayconf » Qua Mar 20, 2013 17:29

\int_{}^{}\sqrt[]{x}\left(x+\frac{1}{x} \right)dx

galera to com duvida de como resolver essa integral alguém pode me explica passo a passo? Obg
mayconf
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Sex Set 21, 2012 12:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Integrais Imediatas

Mensagempor nakagumahissao » Qua Mar 20, 2013 18:07

\int_{}^{}\sqrt[]{x}\left(x+\frac{1}{x} \right)dx

Resolução:

Tomemos:
u = \sqrt{x} \Rightarrow du = \frac{1}{2\sqrt{x}}dx e

x = u^{2} ,

dx = 2 \sqrt{x} du \Rightarrow dx = 2udu

Substituindo na Integral original tem-se:

\int_{}^{}u\left(u^{2} + \frac{1}{u^{2}} \right)2u du =

= \int_{}^{}2u^{2}\left(u^{2} + \frac{1}{u^{2}} \right) du = \int_{}^{}2u^{4} + 2 du = \int_{}^{}2u^{4} du + \int_{}^{}2 du =

\frac{2u^{5} }{5}+ 2u + C

Mas:

u = \sqrt{x},

logo,

\frac{2u^{5}}{5} + 2u + C = \frac{2 (\sqrt{x})^{5}}{5} + 2\sqrt{x} + C =

= \frac{2x^{2} \sqrt{x}}{5} + 2\sqrt{x} + C =

= \sqrt{x} \left(\frac{2x^{2} }{5} + 2 \right) + C

Derivando esta ultima expressão, teremos a equação inicial. Acredito que seja isto!
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 386
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}