por VenomForm » Qua Fev 27, 2013 15:09
-
VenomForm
- Usuário Ativo

-
- Mensagens: 14
- Registrado em: Qua Fev 27, 2013 14:25
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Bacharelado em Ciências da Computação
- Andamento: cursando
por young_jedi » Qua Fev 27, 2013 18:54
o metodo esta certo so que os pontos que elas se encontram não

como elas se nos pontos onde

entaõ



ou seja

corrija os limites e refaça as integrais, o resto ta certo
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por Russman » Qua Fev 27, 2013 19:14
Você está no caminho certo, apenas vamos organizar as ideias.
As funções que você tem são

e

. A 2° função é a Função Constante que não há nenhum detalhe a se preocupar. Já a 1° função temos um módulo envolvido, de forma que teremos de definí-la por partes. Lembre-se que

de modo que podemos estender esse conceito para um função qualquer

tomando

e resolvendo as equações

e

.
No nosso caso temos

cuja solução é
![\left | x^2-4 \right |=\left\{\begin{matrix}
x^2-4 &,-2 \geq x\geq 2 \\
-x^2 + 4 &, 2> x > -2
\end{matrix}\right. = \left\{\begin{matrix}
x^2-4 &,(-\infty ,-2]\cup [2,\infty ) \\
-x^2 + 4 &, (-2,2)
\end{matrix}\right. \left | x^2-4 \right |=\left\{\begin{matrix}
x^2-4 &,-2 \geq x\geq 2 \\
-x^2 + 4 &, 2> x > -2
\end{matrix}\right. = \left\{\begin{matrix}
x^2-4 &,(-\infty ,-2]\cup [2,\infty ) \\
-x^2 + 4 &, (-2,2)
\end{matrix}\right.](/latexrender/pictures/df9731e660f2591b52871cfe9eed3904.png)
Assim, o gráfico das funções é

- Gráfico
onde as intersecções estão marcadas com as elipses azuis e a área compreendida entre as funções hachurada.
Temos de determinar os pontos de intersecção. Para isto basta fazer

"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Área de Região plana limitada por funções
por iarapassos » Qui Jan 03, 2013 18:52
- 1 Respostas
- 2504 Exibições
- Última mensagem por Russman

Qui Jan 03, 2013 20:16
Cálculo: Limites, Derivadas e Integrais
-
- [Funções] Como encontrar f(x) tendo pontos x e y?
por Maschio » Seg Out 08, 2012 13:17
- 6 Respostas
- 5219 Exibições
- Última mensagem por Maschio

Ter Out 09, 2012 12:33
Funções
-
- Como saber se duas funções se interceptam ou não.
por marlonsouza23 » Sex Set 21, 2012 18:48
- 3 Respostas
- 12057 Exibições
- Última mensagem por fraol

Sáb Set 22, 2012 16:04
Funções
-
- AREA LIMITADA
por ELCIO GOMES DE SOUZA » Dom Ago 24, 2008 16:55
- 3 Respostas
- 6983 Exibições
- Última mensagem por admin

Ter Ago 26, 2008 19:02
Cálculo: Limites, Derivadas e Integrais
-
- Integral, área da região limitada.
por Maicon Simoes » Qui Abr 19, 2012 10:58
- 1 Respostas
- 1810 Exibições
- Última mensagem por LuizAquino

Qui Abr 19, 2012 15:00
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.