• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limite]Limite de uma funçao de varias variaveis

[Limite]Limite de uma funçao de varias variaveis

Mensagempor TheKyabu » Seg Fev 04, 2013 22:01

Bom,ja tentei fatorar,fazer substituiçao do tipo y=mx para cair na regra dos dois caminhos,


\lim_{(x,y)\rightarrow(1,1)}\frac{x^2-2x+1}{x^2-y^2-2x+2y}



\lim_{(x,y,z)\rightarrow(0,0,0)}\frac{x^3+y+z^3}{x^4+y^2+z^3}

Me ajudem, por favor
Agradeço desde de ja,abraços
TheKyabu
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Sex Out 19, 2012 19:24
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: [Limite]Limite de uma funçao de varias variaveis

Mensagempor young_jedi » Ter Fev 05, 2013 18:51

vamos primeiro fazer o limite atraves da curva

y=1

portanto

\lim_{(x,y)\to(1,1)}\frac{x^2-2x+1}{x^2-y^2-2x+2y}=\lim_{x\to1}\frac{x^2-2x+1}{x^2-2x+1}=1

e pelo caminho

(y-1)^2=x-1

\lim_{(x,y)\to(1,1)}\frac{x^2-2x+1}{x^2-y^2-2x+2y}=\lim_{(x,y)\to(1,1)}\frac{x^2-2x+1}{(x-1)^2-(y-1)^2}

\lim_{x\to1}\frac{(x-1)^2}{(x-1)^2-(x-1)}=\lim_{x\to1}\frac{x-1}{(x-1)-1}=0

portanto o limite não existe ja que para dois caminhos diferentes ele não resulta no mesmo valor

para o outro exemplo vamos tomar primeiro o caminho onde

x=0 e y=0

\lim_{(x,y,z)\to(0,0,0)}\frac{x^3+y+z^3}{x^4+y^2+z^3}=\lim_{z\to0}\frac{z^3}{z^3}=1

e

y=0 e z=0

\lim_{(x,y,z)\to(0,0,0)}\frac{x^3+y+z^3}{x^4+y^2+z^3}=\lim_{x\to0}\frac{x^3}{x^4}=\infty
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Limite]Limite de uma funçao de varias variaveis

Mensagempor TheKyabu » Ter Fev 05, 2013 19:13

Estou com dificuldades em limites,como devo interpretar esses exercicios,vlw pela ajuda
TheKyabu
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Sex Out 19, 2012 19:24
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: [Limite]Limite de uma funçao de varias variaveis

Mensagempor young_jedi » Ter Fev 05, 2013 19:47

nestes casos voce deve verificar se existem dois caminhos distintos que levam o limite para valores diferentes sendo assim o limite não existe,

para encontrar esses dois caminhos não existe uma regra geral, tem que usar um pouco a imaginação, o importante é treinar varios exercicios que ai voce pega o jeito.
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 123 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: