• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limites] Exponencial

[Limites] Exponencial

Mensagempor Marlon Teofilo » Ter Jan 22, 2013 14:23

Oi boa tarde.

Estou com dificuldades em resolver um limite.

é o seguinte:

\lim_{\infty}{(\frac{x+1}{x-1})}^{2x}

entao, iniciei separando em duas frações, ambas com demoninador (x-1), fazendo os limites separados.

\lim_{\infty}{(\frac{x}{x-1})}^{2x} + \lim_{\infty}{(\frac{1}{x-1})}^{2x}

O segundo termo cheguei à conclusão que é 1/infinito=0

O primeiro termo conclui que a resposta do limite é e^2, após mudar a base e todo aquele processo de sempre, hehehehe, gostaria de saber se está correto, pois desconfio que não! kkkkkkkk
Marlon Teofilo
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Seg Jan 07, 2013 17:38
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecânica
Andamento: cursando

Re: [Limites] Exponencial

Mensagempor e8group » Ter Jan 22, 2013 17:43

Cuidado!

\left( \frac{x + 1}{x-1}\right)^{2x}  \neq  \left( \frac{x}{x-1}\right)^{2x}  + \left( \frac{1}{x-1}\right)^{2x}


Como dica note que , \frac{x + 1}{x-1} =  1  + \frac{2}{x-1} .

Logo , \left( \frac{x + 1}{x-1}\right)^{2x} =  \left( 1 +  \frac{2}{x-1}\right)^{2x}

e portanto , \lim_{x\to \infty} \left(\frac{x+1}{x-1} \right )^{2x}  = \lim_{x\to \infty} \left(1 + \frac{2}{x-1} \right ) ^{2x} .

Além disso , tomando w =  \frac{2}{x-1} .Quando x \to \infty  , w \to 0 .Fazendo as substituições ,

\lim_{x\to \infty} \left(1 + \frac{2}{x-1} \right ) ^{2x}  =  \lim_{w\to 0} \left(1 + w \right ) ^{2 \cdot \frac{2}{w} + 1}

Usando as propriedades a^{b+c} = a^b \cdot a^c e a^{b\cdot c} = \left(a^{b}\right)^{c} e também dos limites, uma delas do produto .

Segue então : \lim_{w\to 0} \left(1 + w \right ) ^{2 \cdot \frac{2}{w} + 1}  =  \left[\lim_{w\to 0} \left(1 + w \right ) ^{1/w }\right]^4 \cdot \lim_{w\to 0} (1 + w) = e^4 .

Obs.: Para compreender a resolução veja os limites fundamentais em especial o limite fundamental que denomina-se o número Euler . Para ler mais , http://pt.wikipedia.org/wiki/N%C3%BAmero_de_Euler .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Limites] Exponencial

Mensagempor Marlon Teofilo » Ter Jan 22, 2013 18:01

Obrigado, minha duvida realmente era se eu utilizei a propriedade de forma correta, e errei hehehehe

vlw mano, entendi!!!
Marlon Teofilo
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Seg Jan 07, 2013 17:38
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecânica
Andamento: cursando

Re: [Limites] Exponencial

Mensagempor lyppeferreira_ » Sáb Abr 04, 2020 15:33

e8group escreveu:Cuidado!

\left( \frac{x + 1}{x-1}\right)^{2x}  \neq  \left( \frac{x}{x-1}\right)^{2x}  + \left( \frac{1}{x-1}\right)^{2x}


Como dica note que , \frac{x + 1}{x-1} =  1  + \frac{2}{x-1} .

Logo , \left( \frac{x + 1}{x-1}\right)^{2x} =  \left( 1 +  \frac{2}{x-1}\right)^{2x}

e portanto , \lim_{x\to \infty} \left(\frac{x+1}{x-1} \right )^{2x}  = \lim_{x\to \infty} \left(1 + \frac{2}{x-1} \right ) ^{2x} .

Além disso , tomando w =  \frac{2}{x-1} .Quando x \to \infty  , w \to 0 .Fazendo as substituições ,

\lim_{x\to \infty} \left(1 + \frac{2}{x-1} \right ) ^{2x}  =  \lim_{w\to 0} \left(1 + w \right ) ^{2 \cdot \frac{2}{w} + 1}

Usando as propriedades a^{b+c} = a^b \cdot a^c e a^{b\cdot c} = \left(a^{b}\right)^{c} e também dos limites, uma delas do produto .

Segue então : \lim_{w\to 0} \left(1 + w \right ) ^{2 \cdot \frac{2}{w} + 1}  =  \left[\lim_{w\to 0} \left(1 + w \right ) ^{1/w }\right]^4 \cdot \lim_{w\to 0} (1 + w) = e^4 .

Obs.: Para compreender a resolução veja os limites fundamentais em especial o limite fundamental que denomina-se o número Euler . Para ler mais , http://pt.wikipedia.org/wiki/N%C3%BAmero_de_Euler .



Como você chegou nessa \frac{x + 1}{x-1} =  1  + \frac{2}{x-1}
Tô travado nessa passagem. Eu tentei pela propriedade do quociente dos limites, mas não cheguei nesse resultado que vc conseguiu.
lyppeferreira_
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sáb Abr 04, 2020 08:03
Formação Escolar: ENSINO MÉDIO
Área/Curso: Licenciatura em Física
Andamento: cursando

Re: [Limites] Exponencial

Mensagempor adauto martins » Dom Abr 05, 2020 11:20

...(x+1)/(x-1)=x/(x-1)+1/(x-1)=((x-1)+1)/(x-1)+1/(x-1)


=(x-1)/(x-1)+1/(x-1)+1/(x-1)=1+1/(x-1)+1/(x-1)=1+2/(x-1)
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 12 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D