• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Problema de EDO

Problema de EDO

Mensagempor thejotta » Dom Jan 13, 2013 23:56

Determine uma função y=y(x) cujo gráfico passe pelo ponto (1,1) e tal que a reta tangente no ponto generico (x,y) tenha coeficiente angular (x^2 + 2y)/(y - 2x)

Alguém sabe como resolver essa questão não sei nem por onde começar.
thejotta
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Seg Out 29, 2012 12:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Problema de EDO

Mensagempor Russman » Seg Jan 14, 2013 03:14

Do enunciado partimos de

\frac{\mathrm{d} y}{\mathrm{d} x} = \frac{x^2+2y}{y-2x}

de modo que, reorganizando os termos, temos a seguinte forma:

\frac{\mathrm{d} y}{\mathrm{d} x} y - x^2 = 2x\frac{\mathrm{d} y}{\mathrm{d} x} + 2y.

Note que o lado direito é exatamente a derivada do produto 2xy. Assim,

\frac{\mathrm{d} y}{\mathrm{d} x} y - x^2 = \frac{\mathrm{d} (2xy)}{\mathrm{d} x} \Rightarrow \frac{\mathrm{d} y}{\mathrm{d} x} y  =

=\frac{\mathrm{d} (2xy)}{\mathrm{d} x} + x^2 \Rightarrow ydy = d(2xy) + x^2 dx

de forma que,

\int  ydy = \int d(2xy) + \int x^2 dx \Rightarrow \frac{1}{2}y^2 = 2xy + \frac{1}{3}x^3 + c .

Agora faça (x,y) = (1,1) para calcular o valor da constante c e use o método de solução de equações de 2° grau para isolar y.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Problema de EDO

Mensagempor thejotta » Seg Jan 14, 2013 07:47

Muito obrigado amigo
thejotta
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Seg Out 29, 2012 12:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.