• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Volume de um sólido por seções transversais

Volume de um sólido por seções transversais

Mensagempor iarapassos » Ter Jan 08, 2013 14:48

Calculo o volume de um sólido que tem para base um circulo de raio r e cujas seções transversais a um diâmetro da mesma são triangulos retangulos isosceles, todos situados em um mesmo semi-espaço em relaçao ao plano que a contem, e quem têm como um dos seus catetos cordas da circunferencia da base, perpendiculares a esse diametro.

Não sei nem como começar!
iarapassos
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Qua Ago 29, 2012 12:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Controle e Automação
Andamento: cursando

Re: Volume de um sólido por seções transversais

Mensagempor young_jedi » Qua Jan 09, 2013 20:47

se eu entendi bem a figura é esta

cone.png
cone.png (1.79 KiB) Exibido 1213 vezes


com isso temos que traçando seções transversais paralelas a base do cone teremos circunferencias de raio x e pela simetria dos triangulos isocele elas estarão a uma distancia tambe x do vertice do cone

sendo assim a area de cada circunferencia sera

A=\pi.x^2

então o volume sera

\int A.dx

\int_{0}^{r} \pi.x^2.dx

integrando

\pi.\frac{r^3}{3}
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)