• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite

Limite

Mensagempor matmatco » Dom Dez 16, 2012 09:15

não estou conseguindo sair dessa raiz ja substitui x= u³ mas minha resposta não bate com a do livro, qual é o meu erro?
\lim_{x\to3}\frac{\sqrt[3]{x}-\sqrt[3]{3}}{x-3}
matmatco
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 58
Registrado em: Qua Ago 24, 2011 17:32
Formação Escolar: GRADUAÇÃO
Área/Curso: matematica UFV
Andamento: cursando

Re: Limite

Mensagempor fraol » Dom Dez 16, 2012 10:06

Bom dia,

Você já tentou multiplicar tanto o numerador quanto o denominador por (\sqrt[3]{x}-\sqrt[3]{x}), então desenvolver o numerador, o que encontra?

.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Limite

Mensagempor MarceloFantini » Dom Dez 16, 2012 10:58

Fraol, sua sugestão não resolve. Multiplique e divida por x^{\frac{2}{3}} + x^{\frac{1}{3}} 3^{\frac{1}{3}} + 3^{\frac{2}{3}}. Então (x^{\frac{1}{3}} - 3^{\frac{1}{3}}) \cdot (x^{\frac{2}{3}} + x^{\frac{1}{3}} 3^{\frac{1}{3}} + 3^{\frac{2}{3}}) = x -3, que poderá ser simplificado com o denominador.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Limite

Mensagempor fraol » Dom Dez 16, 2012 12:35

Olá MarceloFantini

fraol escreveu:Bom dia,

Você já tentou multiplicar tanto o numerador quanto o denominador por (\sqrt[3]{x}-\sqrt[3]{x}), então desenvolver o numerador, o que encontra?

.


Quando escrevi isso tentava mostrar que o numerador é zero, para qualquer x, o que é obvio e nem precisava desse algebrismo pois (\sqrt[3]{x}-\sqrt[3]{x}) = 0 sempre, certo?
Se assim o for, esse limite é 0, concorda?


Por outro lado, a manipulação algébrica que você propôs é válida, e nesse caso o limite não é zero, se não errei as contas.

Qual é a sua conjectura a respeito?

.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Limite

Mensagempor MarceloFantini » Dom Dez 16, 2012 16:03

Começa que você não pode fazer isso pois você estaria dividindo por zero, então sua sugestão deixa de ser válida a partir disso. Sim, o limite é diferente de zero.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Limite

Mensagempor fraol » Dom Dez 16, 2012 16:14

Sim, não podemos dividir por zero. Mas eu ainda não substitui o x por 3. Apenas estou simplificando o numerador para depois partir para o cálculo do limite.

Note que na função original o domínio é R\{3}. Então existe f(1), f(2), f(4) e infinitos outros e todos eles são iguais a zero. Então afirmo que o limite é 0.

Por exemplo, qual é o valor de f(1) nessa fatoração/simplificação que você sugere?

.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Limite

Mensagempor MarceloFantini » Dom Dez 16, 2012 17:32

A função que propos, \sqrt[3]{x} - \sqrt[3]{x} é a função identicamente nula, pois ela é zero em todos os pontos. Novamente, você está essencialmente multiplicando tudo por zero e dizendo que o resultado é zero. Ora, por esse raciocínio então o limite \lim_{x \to 2} \frac{x-2}{\sqrt{x}-\sqrt{2}} é zero, pois multiplicando e dividindo \sqrt{x}-\sqrt{x} teremos que o limite é zero.

Vou tornar a pergunta para você: por que multiplicar por isto? Qual é o seu argumento para multiplicar tudo por zero, alterar completamente o limite e portanto afirmar que é zero?
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Limite

Mensagempor fraol » Dom Dez 16, 2012 17:46

Eu não multipliquei por 0, nem propus uma nova função. Eu, apenas, estou sugerindo que simplifiquemos o numerador e depois vamos ao cálculo do limite, como normalmente fazemos. Você chegou a verificar os valores de f(x) para x diferente de 3 na função original proposta pelo nosso colega?
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Limite

Mensagempor fraol » Dom Dez 16, 2012 17:52

Opa, desculpe, reli agora o enunciado e vi que trata-se de \sqrt[3]{x} - \sqrt[3]{3} no numerador.
Logo ignorem minhas considerações anteriores. Vou ao oculista o mais breve possível ...
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 63 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D