por matmatco » Dom Dez 16, 2012 09:15
não estou conseguindo sair dessa raiz ja substitui x= u³ mas minha resposta não bate com a do livro, qual é o meu erro?
![\lim_{x\to3}\frac{\sqrt[3]{x}-\sqrt[3]{3}}{x-3} \lim_{x\to3}\frac{\sqrt[3]{x}-\sqrt[3]{3}}{x-3}](/latexrender/pictures/997ab4ba073e875cf40ba3c42e7f9f12.png)
-
matmatco
- Usuário Parceiro

-
- Mensagens: 60
- Registrado em: Qua Ago 24, 2011 17:32
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matematica UFV
- Andamento: cursando
por fraol » Dom Dez 16, 2012 10:06
Bom dia,
Você já tentou multiplicar tanto o numerador quanto o denominador por
![(\sqrt[3]{x}-\sqrt[3]{x}) (\sqrt[3]{x}-\sqrt[3]{x})](/latexrender/pictures/2690ff8091b8e64ccd743847b28b4d7b.png)
, então desenvolver o numerador, o que encontra?
.
-
fraol
- Colaborador Voluntário

-
- Mensagens: 392
- Registrado em: Dom Dez 11, 2011 20:08
- Localização: Mogi das Cruzes-SP
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: formado
por MarceloFantini » Dom Dez 16, 2012 10:58
Fraol, sua sugestão não resolve. Multiplique e divida por

. Então

, que poderá ser simplificado com o denominador.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por fraol » Dom Dez 16, 2012 12:35
Olá
MarceloFantinifraol escreveu:Bom dia,
Você já tentou multiplicar tanto o numerador quanto o denominador por
![(\sqrt[3]{x}-\sqrt[3]{x}) (\sqrt[3]{x}-\sqrt[3]{x})](/latexrender/pictures/2690ff8091b8e64ccd743847b28b4d7b.png)
, então desenvolver o numerador, o que encontra?
.
Quando escrevi isso tentava mostrar que o numerador é zero, para qualquer x, o que é obvio e nem precisava desse algebrismo pois
![(\sqrt[3]{x}-\sqrt[3]{x}) = 0 (\sqrt[3]{x}-\sqrt[3]{x}) = 0](/latexrender/pictures/e5a2707d09d3ac152e2baa2e50644f87.png)
sempre, certo?
Se assim o for, esse limite é 0, concorda?
Por outro lado, a manipulação algébrica que você propôs é válida, e nesse caso o limite não é zero, se não errei as contas.
Qual é a sua conjectura a respeito?
.
-
fraol
- Colaborador Voluntário

-
- Mensagens: 392
- Registrado em: Dom Dez 11, 2011 20:08
- Localização: Mogi das Cruzes-SP
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: formado
por MarceloFantini » Dom Dez 16, 2012 16:03
Começa que você não pode fazer isso pois você estaria dividindo por zero, então sua sugestão deixa de ser válida a partir disso. Sim, o limite é diferente de zero.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por fraol » Dom Dez 16, 2012 16:14
Sim, não podemos dividir por zero. Mas eu ainda não substitui o x por 3. Apenas estou simplificando o numerador para depois partir para o cálculo do limite.
Note que na função original o domínio é R\{3}. Então existe f(1), f(2), f(4) e infinitos outros e todos eles são iguais a zero. Então afirmo que o limite é 0.
Por exemplo, qual é o valor de f(1) nessa fatoração/simplificação que você sugere?
.
-
fraol
- Colaborador Voluntário

-
- Mensagens: 392
- Registrado em: Dom Dez 11, 2011 20:08
- Localização: Mogi das Cruzes-SP
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: formado
por MarceloFantini » Dom Dez 16, 2012 17:32
A função que propos,
![\sqrt[3]{x} - \sqrt[3]{x} \sqrt[3]{x} - \sqrt[3]{x}](/latexrender/pictures/35e90c0586a42dcf8b094cde568d769c.png)
é a função identicamente nula, pois ela é zero em todos os pontos. Novamente, você está essencialmente multiplicando tudo por zero e dizendo que o resultado é zero. Ora, por esse raciocínio então o limite

é zero, pois multiplicando e dividindo

teremos que o limite é zero.
Vou tornar a pergunta para você: por que multiplicar por isto? Qual é o seu argumento para multiplicar tudo por zero, alterar completamente o limite e portanto afirmar que é zero?
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por fraol » Dom Dez 16, 2012 17:46
Eu não multipliquei por 0, nem propus uma nova função. Eu, apenas, estou sugerindo que simplifiquemos o numerador e depois vamos ao cálculo do limite, como normalmente fazemos. Você chegou a verificar os valores de f(x) para x diferente de 3 na função original proposta pelo nosso colega?
-
fraol
- Colaborador Voluntário

-
- Mensagens: 392
- Registrado em: Dom Dez 11, 2011 20:08
- Localização: Mogi das Cruzes-SP
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: formado
por fraol » Dom Dez 16, 2012 17:52
Opa, desculpe, reli agora o enunciado e vi que trata-se de
![\sqrt[3]{x} - \sqrt[3]{3} \sqrt[3]{x} - \sqrt[3]{3}](/latexrender/pictures/0788f790cf907f8c7b649e43062460f1.png)
no numerador.
Logo ignorem minhas considerações anteriores. Vou ao oculista o mais breve possível ...
-
fraol
- Colaborador Voluntário

-
- Mensagens: 392
- Registrado em: Dom Dez 11, 2011 20:08
- Localização: Mogi das Cruzes-SP
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Limite] Gráfico e limite para função maior inteiro
por Raphaela_sf » Qui Abr 05, 2012 19:26
- 1 Respostas
- 6396 Exibições
- Última mensagem por LuizAquino

Qui Abr 05, 2012 20:53
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] Limite de funções reais de várias variáveis
por Bianca_R » Dom Nov 04, 2012 17:17
- 1 Respostas
- 4428 Exibições
- Última mensagem por MarceloFantini

Dom Nov 04, 2012 19:37
Cálculo: Limites, Derivadas e Integrais
-
- [Limite trigonométrico] Como calculo este limite?
por Ronaldobb » Qua Nov 07, 2012 23:14
- 3 Respostas
- 4737 Exibições
- Última mensagem por Ronaldobb

Qui Nov 08, 2012 07:37
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] limite trigonométrico quando x tende ao infinito
por Ge_dutra » Seg Jan 28, 2013 10:13
- 2 Respostas
- 6950 Exibições
- Última mensagem por Ge_dutra

Ter Jan 29, 2013 14:20
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] Limite de funções piso (maior inteiro)
por ViniciusAlmeida » Sáb Fev 14, 2015 10:09
- 2 Respostas
- 4177 Exibições
- Última mensagem por adauto martins

Qui Fev 19, 2015 15:01
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.