• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[limite] Está correta a resolução?

[limite] Está correta a resolução?

Mensagempor Fabio Wanderley » Qui Nov 29, 2012 11:47

Bom dia, pessoal,

Estou estudando sequências e séries, e acabei precisando resolver esse limite:

\lim_{n \rightarrow +\infty}1^n

Sei que 1^\infty é uma indeterminação.

Então fiz essa resolução:

\lim_{n \rightarrow +\infty}1^n=\lim_{n \rightarrow +\infty}e^{n\,\ln\,1}=e^{\lim_{n \rightarrow +\infty}n\,\ln\,1}=e^{\lim_{n \rightarrow +\infty}0}=e^{0}=1

Está correta?

Usei um programa matemático (Sage), e a resposta para o limite realmente foi 1.

Desde já agradeço!
Avatar do usuário
Fabio Wanderley
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 68
Registrado em: Sex Mar 23, 2012 12:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Estatística
Andamento: cursando

Re: [limite] Está correta a resolução?

Mensagempor e8group » Qui Nov 29, 2012 20:49

Vamos supor que , exista uma função f definida por f(n) =1^n , n \in \mathbb{R} .É fácil ver que para quaisquer valor que n assmuir , f(n) = 1 . Sendo assim, tomar o limite quando n \to +\infty de 1^n é o mesmo que o de 1 .Logo , \lim_{n\to +\infty}1 =  1 . Não vejo erro na sua solução , mas acredito que é desnecessário todo este procedimento .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [limite] Está correta a resolução?

Mensagempor MarceloFantini » Sex Nov 30, 2012 00:02

Tenho a impressão que você está pensando em \lim_{n \to + \infty} 1^n como \lim_{n \to \infty} \left( 1 + \frac{1}{n} \right)^n. Algumas pessoas pensam que este limite é um pois "aplicam" o limite "dentro" e depois aplicam "fora", fazendo

\lim_{n \to \infty} \left( 1 + \frac{1}{n} \right)^n = \lim_{n \to + \infty} 1^n = 1.

Isto está errado. As duas quantidades, \frac{1}{n} e ()^n variam simultaneamente, e você deve levar isto em conta.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [limite] Está correta a resolução?

Mensagempor LuizAquino » Sex Nov 30, 2012 06:35

Fabio Wanderley escreveu:Bom dia, pessoal,

Estou estudando sequências e séries, e acabei precisando resolver esse limite:

\lim_{n \rightarrow +\infty}1^n

Sei que 1^\infty é uma indeterminação.

Então fiz essa resolução:

\lim_{n \rightarrow +\infty}1^n=\lim_{n \rightarrow +\infty}e^{n\,\ln\,1}=e^{\lim_{n \rightarrow +\infty}n\,\ln\,1}=e^{\lim_{n \rightarrow +\infty}0}=e^{0}=1

Está correta?

Usei um programa matemático (Sage), e a resposta para o limite realmente foi 1.

Desde já agradeço!


Quando dizemos informalmente que "1^\infty é uma indeterminação", o que queremos dizer formalmente é: se \lim_{x\to c} f(x) = 1 e \lim_{x\to c} g(x) = +\infty (ou -\infty), então \lim_{x\to c}f(x)^{g(x)} é uma indeterminação.

No caso do limite em questão, como já explicou santhiago anteriormente, para qualquer número real n, temos que 1^n = 1. Portanto, temos simplesmente que:

\lim_{n\to +\infty}1^n = \lim_{n\to +\infty} 1

Note que o segundo limite não é uma indeterminação. Além disso, o resultado dele é apenas 1. Portanto, temos que o limite original é tal que:

\lim_{n\to +\infty}1^n = 1

Veja um outro exemplo envolvendo essas questões de "indeterminação". Considere o limite abaixo:

\lim_{n \to 0} \frac{0}{n}

Quando dizemos informalmente que "0/0 é uma indeterminação", o que queremos dizer formalmente é: se \lim_{x\to c} f(x) = 0 e \lim_{x\to c} g(x) = 0, então \lim_{x\to c}\dfrac{f(x)}{g(x)} é uma indeterminação.

Mas no caso do limite proposto, note que para qualquer número real n não nulo, temos que \frac{0}{n} = 0. Como nesse limite temos que n não é zero (ele apenas se aproxima de zero), podemos simplesmente escrever:

\lim_{n \to 0} \frac{0}{n} = \lim_{n \to 0} 0

Note que o segundo limite não é uma indeterminação. Além disso, o resultado dele é apenas 0. Portanto, temos que o limite proposto é tal que:

\lim_{n \to 0} \frac{0}{n} = 0
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [limite] Está correta a resolução?

Mensagempor Fabio Wanderley » Sex Nov 30, 2012 09:36

santhiago escreveu:Não vejo erro na sua solução , mas acredito que é desnecessário todo este procedimento .


Realmente, você tem razão, santhiago. Obrigado pela ajuda!

MarceloFantini escreveu:(...)
As duas quantidades, \frac{1}{n} e ()^n variam simultaneamente, e você deve levar isto em conta.


Sim, Marcelo. Essa diferenciação eu já tinha em mente. No caso, só não estava aceitando que o limite dado seria respondido apenas colocando "1". E obrigado pela ajuda!

LuizAquino escreveu:(...)


Obrigado, LuizAquino! Havia raciocinado no que o santhiago postou. Agora ficou mais clara ainda a ideia.



Concluindo, então, a minha resolução é verdadeira, mas não precisava de tudo isso. Foi como matar uma mosca com uma bazuca. :lol:

Saudações!
Avatar do usuário
Fabio Wanderley
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 68
Registrado em: Sex Mar 23, 2012 12:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Estatística
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 55 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?