• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Derivada de segunda ordem]

[Derivada de segunda ordem]

Mensagempor spektroos » Sáb Nov 24, 2012 23:43

f(x)= Cos5X

A derivada dessa funcao seria: -Sen5X ? E depois?
spektroos
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 25
Registrado em: Seg Set 24, 2012 01:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Civil
Andamento: cursando

Re: [Derivada de segunda ordem]

Mensagempor e8group » Dom Nov 25, 2012 00:35

(cos(5x) )'  =  cos'(5x) \cdot (5x)'   =  - sin(5x) \cdot 5   = - 5 \cdot sin(5x) .


Uma forma sugestiva é , sejam p(x) =  5x e h(x) = cos(x). Assim, f(x)  =  cos(5x) =  h(p(x)) .Pela regra da cadeia , f'(x)  =   h'(p(x)) \cdot p'(x) .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Derivada de segunda ordem]

Mensagempor spektroos » Dom Nov 25, 2012 02:39

Obrigado, depois tentarei fazer pela regra da cadeia.
spektroos
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 25
Registrado em: Seg Set 24, 2012 01:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Civil
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}