por inkz » Ter Nov 20, 2012 04:43
Aqui estou novamente, sofrendo em uma parametrização...
DETERMINE UMA FUNÇÃO DE UM PARÂMETRO t CUJA IMAGEM É UMA ELIPSE COM CENTRO EM (0,0) E TAL QUE, EM t = 0, O VETOR TANGENTE É HORIZONTAL DE NORMA 2 E NO INSTANTE pi/2 O VETOR TANGENTE A CURVA É VERTICAL DE NORMA 3.
Sei que a parametrização de uma elipse de centro 0,0 pode ser algo como:
w(t) = (a cost, b sent)
e sua derivada (vetor tangente a curva)
w'(t) = (-a sent, b cost)
mas não entendi o que devo fazer, a partir daí, com os dados fornecidos.
Agradeço toda e qualquer ajuda!!
abraços (:
-
inkz
- Usuário Dedicado

-
- Mensagens: 26
- Registrado em: Ter Nov 20, 2012 01:07
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia
- Andamento: cursando
por young_jedi » Ter Nov 20, 2012 12:21
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por inkz » Qua Nov 21, 2012 03:25
valeu amigo! entendi perfeitamente!!

-
inkz
- Usuário Dedicado

-
- Mensagens: 26
- Registrado em: Ter Nov 20, 2012 01:07
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- PARAMETRIZAÇÃO DE CURVAS
por sasuyanli » Sáb Out 26, 2013 12:14
- 1 Respostas
- 3913 Exibições
- Última mensagem por e8group

Dom Nov 03, 2013 14:31
Cálculo: Limites, Derivadas e Integrais
-
- [CURVAS] CÁLC II - Trajetórias e Parametrização
por inkz » Ter Nov 20, 2012 01:12
- 6 Respostas
- 4332 Exibições
- Última mensagem por inkz

Ter Nov 20, 2012 11:53
Cálculo: Limites, Derivadas e Integrais
-
- Cálculo - Parametrização
por Feliperpr » Ter Abr 24, 2012 21:14
- 12 Respostas
- 7487 Exibições
- Última mensagem por Feliperpr

Ter Abr 24, 2012 22:18
Cálculo: Limites, Derivadas e Integrais
-
- Parametrização de superfície
por AllanGeoffroy » Ter Mar 05, 2013 11:56
- 0 Respostas
- 893 Exibições
- Última mensagem por AllanGeoffroy

Ter Mar 05, 2013 11:56
Cálculo: Limites, Derivadas e Integrais
-
- [Cálculo Vetorial - Parametrização] - Reta
por anselmojr97 » Dom Mar 20, 2016 01:25
- 0 Respostas
- 2511 Exibições
- Última mensagem por anselmojr97

Dom Mar 20, 2016 01:25
Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 14 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.