• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação diferencial - 3

Equação diferencial - 3

Mensagempor Cleyson007 » Qua Nov 07, 2012 21:19

Determine a solução geral de \frac{dy}{dx}=\frac{1}{{x}^{2}(1+x)}

Resposta: y(x)=ln\left(\frac{1+x}{x} \right)-\frac{1}{x}+c
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Equação diferencial - 3

Mensagempor young_jedi » Qui Nov 08, 2012 12:33

integrando a equação dos dois lados

\int\frac{dy}{dx}dx=\int\frac{1}{x^2(x+1)}dx

y=\int\frac{1}{x^2(x+1)}dx

y=\int\frac{(1-x^2+x^2)}{x^2(x+1)}dx

\int\frac{1-x^2}{x^2(x+1)}+\frac{x^2}{x^2(x+1)}dx

\int\frac{(1-x)(1+x)}{x^2(x+1)}+\frac{x^2}{x^2(x+1)}dx

\int\frac{1-x}{x^2}+\frac{1}{x+1}dx

\int\left(\frac{1}{x^2}-\frac{1}{x}+\frac{1}{x+1}\right)dx

integrando

y=-x^{-1}-ln(x)+ln(x+1)+c

y=ln\left(\frac{x+1}{x}\right)-\frac{1}{x}+c
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Funções
Autor: Emilia - Sex Dez 03, 2010 13:24

Preciso de ajuda no seguinte problema:
O governo de um Estado Brasileiro mudou a contribuição previdenciária de seus contribuintes. era de 6% sobre qualquer salário; passou para 11% sobre o que excede R$1.200,00 nos salários. Por exemplo, sobre uma salário de R$1.700,00, a contribuição anterior era: 0,06x R$1.700,00 = R$102,00; e a atual é: 0,11x(R$1.700,00 - R$1.200,00) = R$55,00.
i. Determine as funções que fornecem o valor das contribuições em função do valor x do salário antes e depois da mudança na forma de cobrança.
ii. Esboce seus gráficos.
iii. Determine os valores de salários para os quais:
- a contribuição diminuiu;
- a contribuição permaneceu a mesma;
- a contribuição aumentou.