• Anúncio Global
    Respostas
    Exibições
    Última mensagem

duvida no Limte

duvida no Limte

Mensagempor CarolMarques » Sex Nov 02, 2012 13:18

\lim_{\rightarrow -1} \left[\frac{1}{1-x} - \frac{2}{1-{x}^{2}}\right]

Fazendo o cálculo desse limite eu acho -\infty , mas o gabarito que eu tenho esta - 1/2.Quando eu coloquei essa expressão em uma calculadora de limite eu achei como resposta \infty.

Eu resolvo da seguinte forma:
Aplico a propriedade dos limites separando os limites para depois subtrair os resultados
Assim no final fica
\frac{1}{2} - \infty que é igual a -\infty.

Tem algum erro no meu raciocinio?
CarolMarques
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 29
Registrado em: Qui Mai 03, 2012 20:26
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: duvida no Limte

Mensagempor e8group » Sex Nov 02, 2012 13:46

Sua resolução estar correta veja aqui . Agora se naverdade , x tende a 1 pela esquerda x \to 1^- , o resultado é como consta no gabarito , veja esta opção aqui ! .

Como dica , recomendo este site que utilizei acima para vc checkar o resultado .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.