• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral] Duvida, pois a resposta não coincide.

[Integral] Duvida, pois a resposta não coincide.

Mensagempor fabriel » Seg Out 29, 2012 15:26

E ai Pessoal então:
é dado essa integral:
\int_{}^{}\frac{4x+1}{{x}^{2}+6x+12}dx
Ai como:
{x}^{2}+6x+12 = {\left(x+3 \right)}^{2}+3
Então:
\int_{}^{}\frac{4x+1}{{x}^{2}+6x+12}dx = \int_{}^{}\frac{4x+1}{{\left(x+3 \right)}^{2}+3}dx
Ai calculando:
u=x+3 e du=dx
Então:
\int_{}^{}\frac{4x+1}{{\left(x+3 \right)}^{2}+3}dx =

\int_{}^{}\frac{4\left(u-3 \right)+1}{3+{u}^{2}}du=\int_{}^{}\frac{4u}{3+{u}^{2}}du+\int_{}^{}\frac{-11}{3+{u}^{2}}du

Mas agora estou em duvida pois integrando da um pouco diferente da resposta:
A resposta é:
2 ln \left({x}^{2}+6x+12 \right)-\frac{11}{\sqrt[]{3}}arc tg\frac{x+3}{\sqrt[]{3}}+c
Me ajudem nessa questão por favor..Obrigado!
Matemática, de modo algum, são fórmulas, assim como a música não são notas. (Y Jurquim)
Avatar do usuário
fabriel
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 88
Registrado em: Ter Mai 22, 2012 16:04
Localização: Chapadão do Sul-MS
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando

Re: [Integral] Duvida, pois a resposta não coincide.

Mensagempor young_jedi » Seg Out 29, 2012 17:05

Então fabriel

partindo da onde voce chegou

\int\frac{4u}{3+u^2}du-\int\frac{11}{3+u^2}du

a primeira integral da pra fazer por substituinção

v=3+u^2

dv=2.u.du

\int\frac{2.dv}{v}=2.ln(v)

substituindo a relação de v, u e x

2ln(v)=2.ln(3+(3+x)^2)

2.ln(3+(3+x)^2)=2.ln(x^2+6x+12)

a segunda integral podemos escrever como

\int\frac{11}{3+u^2}=11.\int\frac{1}{3}.\frac{1}{1+\left(\frac{u}{\sqrt{3}}\right)^2}

\frac{11}{3}\int\frac{1}{1+\left(\frac{u}{\sqrt{3}}\right)^2}

fazendo a seguinte substituição

v=\frac{u}{\sqrt{3}}

dv=\frac{du}{\sqrt{3}}

\frac{11}{3}\int\frac{\sqrt{3}}{1+v^2}.dv=\frac{11}{\sqrt{3}}\int\frac{1}{1+v^2}dv

integrando

\frac{11}{\sqrt{3}}\int\frac{1}{1+v^2}dv=\frac{11}{\sqrt{3}}.arctg(v)

substituindo v pela sua relação com u e x

\frac{11}{\sqrt{3}}.arctg(v)=\frac{11}{\sqrt3}arctg(\frac{x+3}{\sqrt3})

sendo assim o resultado final da integral

2.ln(x^2+6x+12)-\frac{11}{\sqrt3}arctg(\frac{x+3}{\sqrt3})
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Integral] Duvida, pois a resposta não coincide.

Mensagempor fabriel » Ter Out 30, 2012 01:48

Valeu ai young_jedi.
Matemática, de modo algum, são fórmulas, assim como a música não são notas. (Y Jurquim)
Avatar do usuário
fabriel
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 88
Registrado em: Ter Mai 22, 2012 16:04
Localização: Chapadão do Sul-MS
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.