• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral fração parcial

Integral fração parcial

Mensagempor felipe_ad » Sex Set 10, 2010 23:26

Olá
Estou com uma dúvida que chega a ser básica, talvez algo relacionado à fatoração.
Já tentei de todas as formas possíveis que vi (bem rápido) em certos exemplos, resolver uma integral do tipo \int_{}^{}\frac{(4x-1)dx}{{(x-1)}^{2}}
O meu problema é com o denominador, não estou chegando a resposta correta que é 4ln\left|x-1 \right|-\frac{3}{x-1}+k
Até consigo achar o 4ln\left|x-1 \right|
Enfim, se alguém se disponibilizar a me ajudar, agradeço desde já.
felipe_ad
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Sáb Abr 03, 2010 12:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Integral fração parcial

Mensagempor MarceloFantini » Sáb Set 11, 2010 03:09

\frac{4x-1}{(x-1)^2} = \frac{A}{(x-1)} + \frac{B}{(x-1)^2}

Multiplicando tudo por (x-1)^2, temos:

(4x-1) = A(x-1) + B

Para x=2 : 7 = A+B
Para x=0 : -1 = -A+B

De onde sai que 2B = 6 \therefore B = 3 e A = 4.

\therefore \; \int \frac{(4x-1)}{(x-1)^2} \; dx = \int \frac{4}{(x-1)} \; dx + \int \frac{3}{(x-1)^2} \; dx

= 4 \int \frac{dx}{(x-1)} + 3 \int \frac{dx}{(x-1)^2} = 4 \cdot ln |x-1| - \frac{3}{(x-1)} + C
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Funções
Autor: Emilia - Sex Dez 03, 2010 13:24

Preciso de ajuda no seguinte problema:
O governo de um Estado Brasileiro mudou a contribuição previdenciária de seus contribuintes. era de 6% sobre qualquer salário; passou para 11% sobre o que excede R$1.200,00 nos salários. Por exemplo, sobre uma salário de R$1.700,00, a contribuição anterior era: 0,06x R$1.700,00 = R$102,00; e a atual é: 0,11x(R$1.700,00 - R$1.200,00) = R$55,00.
i. Determine as funções que fornecem o valor das contribuições em função do valor x do salário antes e depois da mudança na forma de cobrança.
ii. Esboce seus gráficos.
iii. Determine os valores de salários para os quais:
- a contribuição diminuiu;
- a contribuição permaneceu a mesma;
- a contribuição aumentou.