• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral indefinida

Integral indefinida

Mensagempor CrazzyVi » Ter Ago 17, 2010 21:41

Boa noite,
Gostaria de saber como resolvo esta integral: \int_ {} ^{}{e}^{1/t}/{t}^{2}dt
naum estou conseguindo fazer nem por partes nem por substituição.
agradeço desde jah
CrazzyVi
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Sáb Nov 14, 2009 11:18
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharel em Matemática
Andamento: cursando

Re: Integral indefinida

Mensagempor Lucio Carvalho » Qua Ago 18, 2010 08:27

Olá CrazzyVi,
Apresento, em anexo, uma ajuda.
Espero que compreendas!
Anexos
integ..png
Avatar do usuário
Lucio Carvalho
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 127
Registrado em: Qua Ago 19, 2009 11:33
Localização: Rua 3 de Fevereiro - São Tomé
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Física/Química
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.