por PeIdInHu » Sáb Jul 10, 2010 22:23
-
PeIdInHu
- Usuário Ativo

-
- Mensagens: 16
- Registrado em: Sáb Mai 22, 2010 14:47
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Imformatica Biomedica
- Andamento: cursando
por Tom » Sáb Jul 10, 2010 22:57
Sim, está correto.
Tom
-
Tom
- Usuário Parceiro

-
- Mensagens: 75
- Registrado em: Sex Jul 02, 2010 00:42
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Automação e Controle Industrial
- Andamento: formado
por PeIdInHu » Dom Jul 11, 2010 00:37
=))) vlwsss
-
PeIdInHu
- Usuário Ativo

-
- Mensagens: 16
- Registrado em: Sáb Mai 22, 2010 14:47
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Imformatica Biomedica
- Andamento: cursando
por jcanutos » Qui Ago 12, 2010 18:29
-
jcanutos
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Qui Ago 12, 2010 17:53
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Controle e Automação
- Andamento: cursando
por MarceloFantini » Qui Ago 12, 2010 21:40
Não coloque questões diferentes num mesmo tópico.
P.S.: Você errou.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por jcanutos » Seg Ago 16, 2010 12:17
Que questão está diferente???
A questão está correta, e se vc acha que não, então prove com numeros e não com palavras...
Ps:. Acho que você não sabe muito de matemática...não é Fantini???
Editado pela última vez por
jcanutos em Seg Ago 16, 2010 12:37, em um total de 1 vez.
-
jcanutos
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Qui Ago 12, 2010 17:53
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Controle e Automação
- Andamento: cursando
por MarceloFantini » Seg Ago 16, 2010 22:56
Vamos fazer uma análise minuciosa do seu limite.
![\lim_{x \to 0} \frac{\sqrt[3]{x} - \sqrt[3]{3}}{x - 3} \lim_{x \to 0} \frac{\sqrt[3]{x} - \sqrt[3]{3}}{x - 3}](/latexrender/pictures/3bdee8abcfdfdb23b9095339dbd40847.png)
Se o limite é tendendo a zero, o limite é
![\frac{\sqrt[3]{3}}{3} \frac{\sqrt[3]{3}}{3}](/latexrender/pictures/118ec34f59f09b53ca5838763eafaef8.png)
, o que já contradiz o resultado do seu limite supostamente certo. Agora, com o limite que você deveria ter escrito:
![\lim_{x \to 3} \frac{\sqrt[3]{x} - \sqrt[3]{3}}{x - 3} \lim_{x \to 3} \frac{\sqrt[3]{x} - \sqrt[3]{3}}{x - 3}](/latexrender/pictures/95ab1fa4805d9aaad444374333ea4c12.png)
Que é uma indeterminação e que portanto deverá ser resolvido usando manipulação algébrica. Vamos começar analisando sua primeira passagem:
![\lim_{x \to 0} \frac{(\sqrt[3]{x} - \sqrt[3]{3}) \cdot (x+3)}{(x - 3)(x+3)} = \frac{\sqrt[3]{x \cdot x} - \sqrt[3]{3 \cdot x} + \sqrt[3]{3 \cdot x} - \sqrt[3]{3 \cdot 3}}{x^2 - 9} = \frac{\sqrt[3]{x^2} - \sqrt[3]{3^2}}{(x-3)(x+3)} \lim_{x \to 0} \frac{(\sqrt[3]{x} - \sqrt[3]{3}) \cdot (x+3)}{(x - 3)(x+3)} = \frac{\sqrt[3]{x \cdot x} - \sqrt[3]{3 \cdot x} + \sqrt[3]{3 \cdot x} - \sqrt[3]{3 \cdot 3}}{x^2 - 9} = \frac{\sqrt[3]{x^2} - \sqrt[3]{3^2}}{(x-3)(x+3)}](/latexrender/pictures/63dab3db2ef2da5d926dd430c3a3733e.png)
Pra começar, você já errou ao não escrever limite, pois não é o resultado final e já é um erro grave. Segundo, vamos ao seu produto:
![(\sqrt[3]{x} - \sqrt[3]{3}) \cdot (x+3) = x \sqrt[3]{x} - x \sqrt[3]{3} - 3 \sqrt[3]{x} + 3 \sqrt[3]{3} (\sqrt[3]{x} - \sqrt[3]{3}) \cdot (x+3) = x \sqrt[3]{x} - x \sqrt[3]{3} - 3 \sqrt[3]{x} + 3 \sqrt[3]{3}](/latexrender/pictures/7e29cb9b77c2d32c95fae6fcb025f6eb.png)
Que não é o que você escreveu:
![(\sqrt[3]{x} - \sqrt[3]{3}) \cdot (x+3) \neq \sqrt[3]{x \cdot x} - \sqrt[3]{3 \cdot x} + \sqrt[3]{3 \cdot x} - \sqrt[3]{3 \cdot 3} = \sqrt[3]{x^2} - \sqrt[3]{3^2} (\sqrt[3]{x} - \sqrt[3]{3}) \cdot (x+3) \neq \sqrt[3]{x \cdot x} - \sqrt[3]{3 \cdot x} + \sqrt[3]{3 \cdot x} - \sqrt[3]{3 \cdot 3} = \sqrt[3]{x^2} - \sqrt[3]{3^2}](/latexrender/pictures/41df97bc5fa0200d27f525af35dd2f64.png)
Isso demonstra a sua clara falta de conhecimento de distributiva e potenciação. Mas não foi isso, pois você continuou:
![\frac{\sqrt[3]{x^2} - \sqrt[3]{3^2}}{(x-3)(x+3)} = \frac{1^{\frac{2}{3}}(x - 3)}{(x-3)(x+3)} = \frac{\sqrt[3]{1^2}}{x+3} = \frac{1}{6} \frac{\sqrt[3]{x^2} - \sqrt[3]{3^2}}{(x-3)(x+3)} = \frac{1^{\frac{2}{3}}(x - 3)}{(x-3)(x+3)} = \frac{\sqrt[3]{1^2}}{x+3} = \frac{1}{6}](/latexrender/pictures/02c963f3cbe37f52d76327085050d528.png)
Você,
brilhantemente, numa
sacada de gênio, usando toda a sua
malandragem algébrica, colocou
![\sqrt[3]{1^2} \sqrt[3]{1^2}](/latexrender/pictures/9a1bac8a5f1aa77f80b73b5c1d112a0d.png)
em evidência e
SUMIU (???) com as potências de

e

(tudo isso, claro, sem escrever limite, o que continua demonstrando a dedução de uma conta sem sentido algum), levando ao resultado
fantástico de que
![\sqrt[3]{1^2} = 1 \sqrt[3]{1^2} = 1](/latexrender/pictures/109ee31b7569cba1842c02b861b14df3.png)
(uau, obrigado, não sabia dessa...) e substituiu

por 3 (peraí, o limite não era

tendendo à zero?), levando ao resultado final de

.
Conclusão: recomece a escola e de preferência no 5° ano, assim quem sabe dessa vez você aprenderá distributivas e potenciação, aproveite e repasse o ensino médio também, tenho certeza que no seu caso não lhe fará mal algum. Depois, quando for alguém com um pouco de massa cinzenta, estude limites e tente resolver esse exercício de novo.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Limite] Gráfico e limite para função maior inteiro
por Raphaela_sf » Qui Abr 05, 2012 19:26
- 1 Respostas
- 6470 Exibições
- Última mensagem por LuizAquino

Qui Abr 05, 2012 20:53
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] Limite de funções reais de várias variáveis
por Bianca_R » Dom Nov 04, 2012 17:17
- 1 Respostas
- 4550 Exibições
- Última mensagem por MarceloFantini

Dom Nov 04, 2012 19:37
Cálculo: Limites, Derivadas e Integrais
-
- [Limite trigonométrico] Como calculo este limite?
por Ronaldobb » Qua Nov 07, 2012 23:14
- 3 Respostas
- 4838 Exibições
- Última mensagem por Ronaldobb

Qui Nov 08, 2012 07:37
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] limite trigonométrico quando x tende ao infinito
por Ge_dutra » Seg Jan 28, 2013 10:13
- 2 Respostas
- 7027 Exibições
- Última mensagem por Ge_dutra

Ter Jan 29, 2013 14:20
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] Limite de funções piso (maior inteiro)
por ViniciusAlmeida » Sáb Fev 14, 2015 10:09
- 2 Respostas
- 4259 Exibições
- Última mensagem por adauto martins

Qui Fev 19, 2015 15:01
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.