por Joao Paulo » Qua Jun 23, 2010 15:06
Boa Tarde,
Estou dois problemas.Segue:
Eu devo integrar primeiro por x ou por y?Pois estão dando respostas diferentes.Achei um pouco estranho.
Segue o problema: Calcular a integral: f(x,y)= x*y
G: {(x,y): x*(3-x) ? y ? sen x ; 0 ? x ? 2,4}
Quando integro primeiro por "y" e depois por "x" -> tenho como resposta: -4,3984
Quando integro primeiro por "x" e depois por "y"-> tenho como resposta: ((36/25)*sin²(x)) - ((36/25)*x²*(3-x)²)
Acredito que eu devo integrar primeiro por "y"e depois por "x", isso estaria correto?
---------------------------------------------------------------------------------------------------------------------------------
Neste outro problema eu gostaria de confirmar se montei a integral corretamente.Segue o problema:
Seja G a região entre as esferas de raios r1=2 e r2=4 centradas na origem suponha a região preenchida com um material de densidade variável ?(x,y,z)= 1 + cos x . Qual é a massa da região e qual é a densidade média?
Para o Calculo da massa eu fiz a seguinte integral:

( 8 vezes pq dividi em 8 partes iguais (4 + 4 quadrantes)
e para densidade:

( 8 vezes pq dividi em 8 partes iguais (4 + 4 quadrantes)
Sendo densidae = Massa/Volume
Estaria correto?
Desde já gostaria de agradecer a atenção.
PS: Não é necessário calcular a integral, somente gostaria de confirma se as montei corretamente.
-
Joao Paulo
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Qua Jun 23, 2010 14:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Eletrônica
- Andamento: cursando
por paulodiego » Qua Jun 23, 2010 16:08
em um dado instante um soro de 500ml é administrado a um paciente com a vazao de 2 gotas por segundo. sabendo-se qua cada gota tem o volume de 10mm³, qual das alternativas corresponde ao tempo necessario, desde o insntante inicial, para que volume restante de soro seja de 176ml?
A) 4 horas e 10 minutos
B) 2 horas e 20 minutos
C) 4 horas e 30 minutos
D) 2 horas e 10 minutos
E) 4 horas e 50 minutos
a resposta certa é a C, porém nao sei como calcular. qual a melhor formula?
-
paulodiego
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Seg Mai 24, 2010 11:24
- Formação Escolar: GRADUAÇÃO
- Área/Curso: administração
- Andamento: cursando
por MarceloFantini » Qui Jun 24, 2010 08:22
Paulodiego, poste sua questão em outro tópico.
João Paulo, desculpe mas não posso ajudá-lo (ainda). Não cheguei nisso em cálculo.

Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por paulodiego » Seg Jun 28, 2010 19:31
desculpe. é que nao sei como postar topicos pq sou novo aqui no forum. se vc poder me dar uma dica eu agradeço. vlw
-
paulodiego
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Seg Mai 24, 2010 11:24
- Formação Escolar: GRADUAÇÃO
- Área/Curso: administração
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Integral tripla Ajuda
por Silva339 » Seg Mai 13, 2013 17:01
- 0 Respostas
- 771 Exibições
- Última mensagem por Silva339

Seg Mai 13, 2013 17:01
Cálculo: Limites, Derivadas e Integrais
-
- Integral Tripla
por Cleyson007 » Qua Mai 16, 2012 11:41
- 2 Respostas
- 1966 Exibições
- Última mensagem por LuizAquino

Sex Mai 18, 2012 20:14
Cálculo: Limites, Derivadas e Integrais
-
- Integral tripla
por DanielFerreira » Dom Jun 10, 2012 19:27
- 1 Respostas
- 1601 Exibições
- Última mensagem por Russman

Seg Jun 11, 2012 00:39
Cálculo: Limites, Derivadas e Integrais
-
- INTEGRAL TRIPLA
por Garota nerd » Qua Jun 27, 2012 17:40
- 4 Respostas
- 2944 Exibições
- Última mensagem por Garota nerd

Qui Jun 28, 2012 01:28
Cálculo: Limites, Derivadas e Integrais
-
- Integral tripla
por DanielFerreira » Sáb Jul 07, 2012 13:00
- 2 Respostas
- 1773 Exibições
- Última mensagem por DanielFerreira

Dom Jul 08, 2012 13:01
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.