por Asustek27 » Qui Mai 27, 2010 11:26
Boa tarde.
Antes de mais, peço desculpa se o exercício não foi colocado no local correto, mas estou com algumas dificuldades em resolvê-lo.
O exercício é o seguinte:
8.) O modelo matemático encontrado para descrever o arco de entrada num túnel, representado no referencial o.n xOy , é dado pela função:
f(x) =ln (16-x^2)(x elevado a 2)
8.1) Recorra à calculadora gráfica para determinar o ponto onde a taxa de variação de f é nula e interprete o valor encontrado no contexto do problema.
8.2) Determine a distância ___ (a largura da entrada do túnel).
-------------------------------- AB
A imagem referente ao exercício é esta:

Tenho imensas dúvidas do que fazer neste exercício, daí não ter colocado nenhuma explicação no contexto em si.
Agradeço a quem me ajudar a resolvê-lo, pois terei que o apresentar amanhã, muito obrigado!
-
Asustek27
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Dom Mar 14, 2010 18:55
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Programação
- Andamento: cursando
por MarceloFantini » Qui Mai 27, 2010 17:42
Bom, primeiro nós temos algumas restrições: não existe logaritmo de 0 e o logaritmando tem que ser positivo. Assim:

e

. Dessas duas, podemos obter que

(explicação detalhada:

).
Agora, derivando a função:

A taxa de variação é nula quando

, ou seja,

.
Interpretando os resultados obtidos no problema: a taxa de variação se anula, ou seja, a derivada é zero quando a reta tangente é horizontal (paralela ao eixo x). Os valores onde x se anularia (mas não assume devido a restrição do logaritmo) são -4 e 4, como calculado acima. No entanto, são as extremidades do tunel, e então a distãncia

.
Qualquer dúvida comente.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Asustek27 » Qui Mai 27, 2010 19:36
Olá amigo,
Tenho a agradecer-lhe novamente a sua óptima ajuda à resolução deste problema e muitos parabéns pelos seus grandes conhecimentos!
Depois de ver o exercício surgiu-me uma outra dúvida.
Como pede na alínea 8.1) qual é a fórmula que tenho que introduzir na calculadora para me ajudar no resultado final?
Obrigado mais uma vez.
Cumprimentos.
-
Asustek27
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Dom Mar 14, 2010 18:55
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Programação
- Andamento: cursando
por MarceloFantini » Sex Mai 28, 2010 08:41
Se a sua calculadora deriva, deveria colocar a própria função. Mas se você tem conhecimentos de derivada nem precisa, o resultado sai direto.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Dúvida] Problema de otimização
por Tsuyoshi » Sáb Jun 20, 2015 21:20
- 0 Respostas
- 2016 Exibições
- Última mensagem por Tsuyoshi

Sáb Jun 20, 2015 21:20
Cálculo: Limites, Derivadas e Integrais
-
- Otimização - dúvida na construção da função
por ramirocalazans » Sex Jun 29, 2012 15:50
- 2 Respostas
- 2786 Exibições
- Última mensagem por ramirocalazans

Sáb Jun 30, 2012 01:28
Cálculo: Limites, Derivadas e Integrais
-
- [DERIVADA- Dúvida exercício de otimização
por gabifzm » Qua Out 23, 2013 16:14
- 0 Respostas
- 1054 Exibições
- Última mensagem por gabifzm

Qua Out 23, 2013 16:14
Cálculo: Limites, Derivadas e Integrais
-
- DÚVIDA URGENTE!!
por tatahsooares » Seg Dez 13, 2010 01:32
- 0 Respostas
- 1321 Exibições
- Última mensagem por tatahsooares

Seg Dez 13, 2010 01:32
Matemática Financeira
-
- Dúvida urgente
por deborakisses » Dom Mai 08, 2011 16:05
- 1 Respostas
- 1313 Exibições
- Última mensagem por Molina

Dom Mai 08, 2011 18:19
Geometria Espacial
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.