• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limites no infinito

Limites no infinito

Mensagempor felipe_ad » Sáb Abr 24, 2010 15:00

Olá
Estou com duas duvidas sobre limites no infinito.
A primeira é sobre o estudo do sinal do numero proximo de zero no denominador. Ex: lim(2x5-3x²+2)/-x²+7 quando x->+infinito
A outra é sobre como identificar uma indeterminaçao do tipo "infinito-infinito", por exemplo, no seguinte limite: lim(3x5-4x³+1) quando x->+infinito

Tenho prova segunda, me ajudem rsrs
Agradeço desde já
felipe_ad
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Sáb Abr 03, 2010 12:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Limites no infinito

Mensagempor MarceloFantini » Sáb Abr 24, 2010 18:34

Felipe, esclareça: \lim_{x \to +\infty} \frac {2x^5 -3x^2 +2} {-x^2 +7}; \lim_{x \to +\infty} 3x^5 -4x^3 +1.

Se forem estes os casos, no segundo acredito que não exista determinação, pois x^5 cresce muito mais que x^3, então o limite é infinito mesmo. Indeterminação é quando se tem \frac {\infty}{0}; \frac {0}{0}; \frac {\infty}{\infty}. No primeiro, eu faria assim: \lim_{x \to +\infty} \frac {x^5 (2 - \frac {3}{x^3} + \frac {2}{x^5})} {x^2 (-1 + \frac {7}{x^2})} = \lim_{x \to +\infty} \frac { x^3 ( 2 - \frac {3}{x^3} + \frac {2}{x^5}) } {-1 + \frac {7}{x^2}}. Quando x está tendendo ao infinito, \frac {7}{x^2}; \frac {3}{x^3}; \frac {2}{x^5} todos tendem a 0, sobrando \lim_{x \to + \infty} = -2x^3 = - \infty.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Limites no infinito

Mensagempor felipe_ad » Sáb Abr 24, 2010 19:29

No primeiro caso, entendi como vc fez. Mas é que no livro que tenho, ensina diferente: divide todos os termos pelo termo de maior grau, no caso {x}^{5}, ai o denominador ficaria -\frac{1}{{x}^{3}}+\frac{7}{{x}^{5}}, como x\rightarrow+\infty, o denominador seria 0, daí ele (o livro) fala que se for {0}^{-}, no caso algum número que se aproxime de zero pela esquerda, o limite seria -\infty. É ai que queria saber como saber o sinal desse número aproximado de zero.

O segundo caso, tá tranquilo já.

Obrigado.
felipe_ad
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Sáb Abr 03, 2010 12:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Limites no infinito

Mensagempor MarceloFantini » Dom Abr 25, 2010 02:27

Eu aprendi a colocar as maiores potências em evidência e trabalhar daí pra frente. Qual método você achou mais fácil de trabalhar? Escolha aquele que você entenda o conceito e sinta-se confortável em trabalhar.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}