• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limites no infinito

Limites no infinito

Mensagempor felipe_ad » Sáb Abr 24, 2010 15:00

Olá
Estou com duas duvidas sobre limites no infinito.
A primeira é sobre o estudo do sinal do numero proximo de zero no denominador. Ex: lim(2x5-3x²+2)/-x²+7 quando x->+infinito
A outra é sobre como identificar uma indeterminaçao do tipo "infinito-infinito", por exemplo, no seguinte limite: lim(3x5-4x³+1) quando x->+infinito

Tenho prova segunda, me ajudem rsrs
Agradeço desde já
felipe_ad
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Sáb Abr 03, 2010 12:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Limites no infinito

Mensagempor MarceloFantini » Sáb Abr 24, 2010 18:34

Felipe, esclareça: \lim_{x \to +\infty} \frac {2x^5 -3x^2 +2} {-x^2 +7}; \lim_{x \to +\infty} 3x^5 -4x^3 +1.

Se forem estes os casos, no segundo acredito que não exista determinação, pois x^5 cresce muito mais que x^3, então o limite é infinito mesmo. Indeterminação é quando se tem \frac {\infty}{0}; \frac {0}{0}; \frac {\infty}{\infty}. No primeiro, eu faria assim: \lim_{x \to +\infty} \frac {x^5 (2 - \frac {3}{x^3} + \frac {2}{x^5})} {x^2 (-1 + \frac {7}{x^2})} = \lim_{x \to +\infty} \frac { x^3 ( 2 - \frac {3}{x^3} + \frac {2}{x^5}) } {-1 + \frac {7}{x^2}}. Quando x está tendendo ao infinito, \frac {7}{x^2}; \frac {3}{x^3}; \frac {2}{x^5} todos tendem a 0, sobrando \lim_{x \to + \infty} = -2x^3 = - \infty.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Limites no infinito

Mensagempor felipe_ad » Sáb Abr 24, 2010 19:29

No primeiro caso, entendi como vc fez. Mas é que no livro que tenho, ensina diferente: divide todos os termos pelo termo de maior grau, no caso {x}^{5}, ai o denominador ficaria -\frac{1}{{x}^{3}}+\frac{7}{{x}^{5}}, como x\rightarrow+\infty, o denominador seria 0, daí ele (o livro) fala que se for {0}^{-}, no caso algum número que se aproxime de zero pela esquerda, o limite seria -\infty. É ai que queria saber como saber o sinal desse número aproximado de zero.

O segundo caso, tá tranquilo já.

Obrigado.
felipe_ad
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Sáb Abr 03, 2010 12:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Limites no infinito

Mensagempor MarceloFantini » Dom Abr 25, 2010 02:27

Eu aprendi a colocar as maiores potências em evidência e trabalhar daí pra frente. Qual método você achou mais fácil de trabalhar? Escolha aquele que você entenda o conceito e sinta-se confortável em trabalhar.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: