por Nei Stolberg » Qui Mar 21, 2019 19:11
Boa tarde a todos.
Tenho uma tabela de valores que foi calculada com base em uma integral, conforme abaixo. A tabela lista valores para até 25 amostras. Eu gostaria de calcular para mais amostras, tipo 26, 27 e por ai vai...
Mas não consigo entender o que exatamente ele considera como x e como infinito nas integrais. Se alguem puder me ajudar a entender isso, agradeço.
![d2=\int_{-\infty}^{+\infty} [1-(1-{\alpha}_{1})^n - ({\alpha}_{1})^2] d{x}_{1} d2=\int_{-\infty}^{+\infty} [1-(1-{\alpha}_{1})^n - ({\alpha}_{1})^2] d{x}_{1}](/latexrender/pictures/e00922d3ae56c95ef18327623fa7d516.png)
Onde
![{\alpha}_{1}=1/\sqrt[2]{2\pi}\int_{-\infty}^{{x}_{1}} {e}^{-({x}^{2}/2}) dx {\alpha}_{1}=1/\sqrt[2]{2\pi}\int_{-\infty}^{{x}_{1}} {e}^{-({x}^{2}/2}) dx](/latexrender/pictures/070fcb7ba990fc297801d25206bbf6a5.png)
e n = Sample size
sample size--------d2
2 --------------- 1,128
3 --------------- 1,693
4 --------------- 2,059
5 --------------- 2,326
6 --------------- 2,534
7 --------------- 2,704
8 --------------- 2,847
.....
23 ------------- 3,858
24 ------------- 3,895
25 ------------- 3,931
-
Nei Stolberg
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Qua Mar 20, 2019 17:15
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Tecnólogo em Mecãnica
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [calculo] integral definida
por beel » Sex Nov 18, 2011 12:29
- 1 Respostas
- 1837 Exibições
- Última mensagem por LuizAquino

Sex Nov 18, 2011 22:05
Cálculo: Limites, Derivadas e Integrais
-
- [calculo] integral definida
por beel » Sex Nov 18, 2011 12:48
- 1 Respostas
- 1979 Exibições
- Última mensagem por LuizAquino

Sex Nov 18, 2011 22:07
Cálculo: Limites, Derivadas e Integrais
-
- [calculo] integral definida
por beel » Sex Nov 18, 2011 12:53
- 1 Respostas
- 2014 Exibições
- Última mensagem por LuizAquino

Sex Nov 18, 2011 22:00
Cálculo: Limites, Derivadas e Integrais
-
- [calculo] integral definida
por beel » Sex Nov 18, 2011 13:29
- 1 Respostas
- 1718 Exibições
- Última mensagem por MarceloFantini

Sex Nov 18, 2011 16:18
Cálculo: Limites, Derivadas e Integrais
-
- Calculo de volume por Integral definida
por teteffs » Qui Out 06, 2011 17:32
- 7 Respostas
- 6703 Exibições
- Última mensagem por teteffs

Sáb Out 08, 2011 20:18
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.