por Laisa » Ter Fev 26, 2019 17:02
Dado a função

Faça a derivada da primeira e a derivada da segunda.
-
Laisa
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Ter Fev 19, 2019 21:57
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Ciência da computação
- Andamento: cursando
por DanielFerreira » Qui Set 05, 2019 23:28
Considere

. De acordo com a regra do quociente,
![\boxed{\mathsf{f'(x) = \dfrac{g'(x) \cdot h(x) - g(x) \cdot h'(x)}{[h(x)]^2}}} \boxed{\mathsf{f'(x) = \dfrac{g'(x) \cdot h(x) - g(x) \cdot h'(x)}{[h(x)]^2}}}](/latexrender/pictures/d0700ee76243a8a4d818be6b215d8f84.png)
Dito isto, temos que:

Para determinar a derivada segunda, aplique novamente a regra do quociente...
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Derivada primeira e segunda
por luiz3107 » Ter Ago 17, 2010 16:39
- 2 Respostas
- 2829 Exibições
- Última mensagem por luiz3107

Ter Ago 17, 2010 17:54
Cálculo: Limites, Derivadas e Integrais
-
- Derivada de primeira e segunda ordem
por Nina » Qui Nov 05, 2009 20:52
- 1 Respostas
- 4012 Exibições
- Última mensagem por marciommuniz

Sex Nov 06, 2009 13:02
Cálculo: Limites, Derivadas e Integrais
-
- Derivada primeira
por LAZAROTTI » Dom Jun 24, 2012 17:33
- 1 Respostas
- 1647 Exibições
- Última mensagem por e8group

Dom Jun 24, 2012 18:38
Cálculo: Limites, Derivadas e Integrais
-
- [Derivada Primeira]
por LAZAROTTI » Ter Dez 11, 2012 21:52
- 1 Respostas
- 1717 Exibições
- Última mensagem por e8group

Ter Dez 11, 2012 22:29
Cálculo: Limites, Derivadas e Integrais
-
- Derivada de primeira ordem.
por Sobreira » Sex Mar 08, 2013 01:14
- 1 Respostas
- 1755 Exibições
- Última mensagem por Russman

Sex Mar 08, 2013 04:49
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.