por Maisa_Rany » Seg Nov 19, 2018 16:53
Boa tarde! Podem me ajudar com a questão abaixo, por favor?
Encontre o Polinômio de Taylor de ordem 2 da função f(x,y) = e^x.cos y no ponto(0,0).
(_) Q(x, y) = 1 + x + 1/2 x^2 + 1/2 y^2
(_) Q(x, y) = 1 + x - 1/2 x^2 + 1/2 y^2
(_) Q(x, y) = x + 1/2 x^2 - 1/2 y^2
(_) Nenhuma das outras alternativas.
(_) Q(x, y) = 1 + x + x^2 - y^2
-
Maisa_Rany
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Qui Out 25, 2018 20:54
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em matemática
- Andamento: cursando
por Gebe » Ter Nov 20, 2018 00:38
Para um polinomio de ordem 2, vamos precisar de algumas derivadas parciais, logo vamos calcula-las previamente assim como o seus valores no ponto (0,0):

O polinomio de ordem 2 é dado por:




Alternativa D (nenhuma deas alternativas)
Obs.: Confira os calculo, como fiz diretamente no LaTEX posso ter deixado passar algo.
Qualquer duvida deixe msg
-
Gebe
- Colaborador Voluntário

-
- Mensagens: 158
- Registrado em: Qua Jun 03, 2015 22:47
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia eletrica
- Andamento: cursando
por Maisa_Rany » Ter Nov 20, 2018 16:26
Muito obrigada! Irei acompanhar os cálculos.
Tem outra questão: De forma geral, o PIB, P, é função destas duas variáveis: L e K: P = P(L,K). No ano de 1920, os dados da economia americana mostravam que ?P/?L= 0,9 e ?P/?K=0,15. Naquele ano, um incremento de 30% nos investimentos de trabalho e 10% em capital trariam um crescimento do PIB de:
(_) 20%
(_) 30%
(_) Nenhuma das outras alternativas.
(_) 28,5%
(_) 25%
Pode me ajudar com esta também?
-
Maisa_Rany
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Qui Out 25, 2018 20:54
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em matemática
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- polinomio de taylor
por ezidia51 » Ter Set 24, 2019 00:09
- 6 Respostas
- 5811 Exibições
- Última mensagem por ezidia51

Qua Set 25, 2019 23:49
Cálculo: Limites, Derivadas e Integrais
-
- [Calculo 1] Polinômio de Taylor
por LuisLemos » Seg Ago 01, 2016 22:36
- 1 Respostas
- 3323 Exibições
- Última mensagem por Cleyson007

Ter Ago 02, 2016 12:40
Cálculo: Limites, Derivadas e Integrais
-
- [polinômio de taylor] - dúvida em exercício
por natanaelskt » Dom Jun 29, 2014 13:02
- 2 Respostas
- 2695 Exibições
- Última mensagem por natanaelskt

Qua Jul 02, 2014 02:08
Cálculo: Limites, Derivadas e Integrais
-
- Polinomio de taylor - Dúvida sobre o erro.
por natanaelskt » Seg Jun 23, 2014 18:55
- 0 Respostas
- 1613 Exibições
- Última mensagem por natanaelskt

Seg Jun 23, 2014 18:55
Cálculo: Limites, Derivadas e Integrais
-
- [polinômio de taylor] - Dúvida sobre o exercício
por natanaelskt » Ter Jul 08, 2014 11:41
- 0 Respostas
- 1664 Exibições
- Última mensagem por natanaelskt

Ter Jul 08, 2014 11:41
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
(FGV) ... função novamente rs
Autor:
my2009 - Qua Dez 08, 2010 21:48
Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
Assunto:
(FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25
Uma função de 1º grau é dada por

.
Temos que para

,

e para

,

.

Ache o valor de

e

, monte a função e substitua

por

.
Assunto:
(FGV) ... função novamente rs
Autor:
Pinho - Qui Dez 16, 2010 13:57
my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20
Assunto:
(FGV) ... função novamente rs
Autor:
dagoth - Sex Dez 17, 2010 11:55
isso ai foi uma questao da FGV?
haahua to precisando trocar de faculdade.
Assunto:
(FGV) ... função novamente rs
Autor:
Thiago 86 - Qua Mar 06, 2013 23:11
Saudações!
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b
Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.