Bem, na minha opnião o enunciado não é claro quanto a situação, no entanto acho que o entuito era o que represento no desenho abaixo.
Ps.: percebi só agora que o "6Km" ficou mal posicionado. O "6Km" é a distancia AB e não AX

- Sem título.png (3.42 KiB) Exibido 7176 vezes
No desenho veos que o rapaz está em uma margem de um rio com largura de 5Km e quer chegar em um ponto B a 6Km do ponto A localizados na outra margem.
Como vemos no desenho, a linha da trajetoria do barco o ponto onde vai atracar (x) forma um triangulo retangulo, sendo 'h' a hipotenusa.
Perceba tambem que a diferença (6-x) representa a distancia que será percorrida andando.
teremos então que a distancia total percorrida será dada por h + (6-x) como mostrado abaixo:
![\\
Distancia\;total=h+(6-x)\\
\\
Distancia\;total=\sqrt[]{x^2+5^5} + (6-x)\\
\\
Distancia\;total=\sqrt[]{x^2+25} + (6-x) \\
Distancia\;total=h+(6-x)\\
\\
Distancia\;total=\sqrt[]{x^2+5^5} + (6-x)\\
\\
Distancia\;total=\sqrt[]{x^2+25} + (6-x)](/latexrender/pictures/1ed2a0d52fb0e0945160a36dbc5344f6.png)
Como estamos interessados no tempo, vamos dividir cada trecho pela sua respectiva velocidade:
![\\
t(x)=\frac{Dist_{barco}}{Vel_{barco}} + \frac{Dist_{pe}}{Vel_{pe}}\\
\\
t(x) = \frac{\sqrt[]{x^2+25}}{2} + \frac{(6-x)}{4} \\
t(x)=\frac{Dist_{barco}}{Vel_{barco}} + \frac{Dist_{pe}}{Vel_{pe}}\\
\\
t(x) = \frac{\sqrt[]{x^2+25}}{2} + \frac{(6-x)}{4}](/latexrender/pictures/0315d41724b8118dbcaaeb118fbdb233.png)
Por fim temos que achar 'x' que minimiza o tempo gasto. Para isso igualamos a derivada primeira da função t(x):
![\\
\frac{d\left( t(x) \right)}{dx}=\frac{x}{2\sqrt[]{x^2+25}}-1/4\\
\\
\frac{x}{2\sqrt[]{x^2+25}}-1/4=0\\
\\
4x^2 = x^2+25\\
\\
x = \frac{5\sqrt[]{3}}{3} \\
\frac{d\left( t(x) \right)}{dx}=\frac{x}{2\sqrt[]{x^2+25}}-1/4\\
\\
\frac{x}{2\sqrt[]{x^2+25}}-1/4=0\\
\\
4x^2 = x^2+25\\
\\
x = \frac{5\sqrt[]{3}}{3}](/latexrender/pictures/b096eeac37421c18ec50494cedc5dff6.png)
Espero ter ajudado, bons estudos.