por Josi » Ter Mar 16, 2010 22:21
Num trabalho foi dada a seguinte questão:
Uma partícula, em movimento unidimensional, possui aceleração a=-3x (m/s²). Sabendo-se que no tempo t=0s, V=0 e X=0, encontre equações para a velocidade e posição para qualquer instante de tempo. Calcule o deslocamento entre t=1s e t=3s.Como a aceleração não é constante, sei que são válidas apenas as relações gerais, tentei achar primeriamente a equação da velocidade usando a relação
, substituindo a por -3x, pode se fazer a separação de variáveis e encontra-se a seguinte integral:
, o problema é que ao resolvê-la no final encontro uma raiz de número negativo.Por favor, me ajudem, tenho que entregar o trabaho até sexta-feira.
-
Josi
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Qui Set 10, 2009 16:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Computação
- Andamento: cursando
por Molina » Ter Mar 16, 2010 22:46
Boa noite, Josi.
Acho que o que ele quer é que você use as propriedades de derivada e integral, dado a aceleração.
Sabemos que a derivada da posição é a velocidade. E a derivada da velocidade é a aceleração. Então fazendo o trajeto contrário, temos que a integral da aceleração é a velocidade. E a integral da velocidade é a posição.
Fazendo isso você encontrará a equação geral da velocidade e da posição.
Só confirme se a aceleração é mesmo

ou

, já que t é a unidade de tempo e x a de posição.
Depois tento colocar as contas.
Estou de saída.

-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por Josi » Qua Mar 17, 2010 21:35
-
Josi
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Qui Set 10, 2009 16:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Computação
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Integrais em exercicios de fisica mecanica
por iksin » Ter Nov 06, 2018 14:27
- 0 Respostas
- 5939 Exibições
- Última mensagem por iksin

Ter Nov 06, 2018 14:27
Cálculo: Limites, Derivadas e Integrais
-
- [ÁLGEBRA EM FÓRMULAS]
por Andreyan » Qui Ago 16, 2012 14:09
- 4 Respostas
- 2852 Exibições
- Última mensagem por Russman

Sex Ago 17, 2012 16:15
Cálculo: Limites, Derivadas e Integrais
-
- Sobre as Fórmulas
por Jhenrique » Seg Dez 10, 2012 18:29
- 3 Respostas
- 2049 Exibições
- Última mensagem por Jhenrique

Dom Fev 03, 2013 01:04
Álgebra Elementar
-
- [Editor de Fórmulas]
por dehcalegari » Ter Ago 27, 2013 11:49
- 1 Respostas
- 1279 Exibições
- Última mensagem por Cleyson007

Ter Ago 27, 2013 11:54
Cálculo: Limites, Derivadas e Integrais
-
- Demonstração de fórmulas de derivadas
por victoreis1 » Qua Nov 24, 2010 20:09
- 1 Respostas
- 2950 Exibições
- Última mensagem por MarceloFantini

Qui Nov 25, 2010 00:43
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.