• Anúncio Global
    Respostas
    Exibições
    Última mensagem

derivação impliitaa

derivação impliitaa

Mensagempor luccahm » Seg Jun 11, 2018 18:01

seja y f x uma função dada pela implicitamente pela questao x²+xy+y² = 3. admitindo f derivavel, determine as possiveis retas tangentes ao gráfico de f que são normais à reta x-y+1=0.
Eu tentei mais n consegui começar alguem pode me ajudar a fazer
luccahm
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Seg Jun 11, 2018 17:59
Formação Escolar: ENSINO MÉDIO
Área/Curso: ciencia da computação
Andamento: cursando

Re: derivação impliitaa

Mensagempor nakagumahissao » Dom Jun 17, 2018 08:45

Faz um bom tempo que não tenho usado o Cálculo, mas creio que a solução para o problema seja o seguinte:

Em primeiro lugar, se f é derivável e as retas tangentes de f (dy/dx) são normais à reta x - y + 1 = 0, ou seja, são perpendiculares à esta reta, então, a declividade dessa reta será igual à equação das retas tangentes de f. Em outras palavras, diferenciando-se implictamente a equação desta reta, teremos:

[1]
x - y + 1 = 0 \Rightarrow 1 - \frac{dy}{dx} + 0 = 0  \Rightarrow \frac{dy}{dx} = 1

Diferenciando-se agora f, teremos:

{x}^{2}+xy+ {y}^{2} = 3 \Rightarrow 2x + y + x\frac{dy}{dx} + 2y\frac{dy}{dx} = 0

Trabalhando um pouco o resultado acima, teremos:

\frac{dy}{dx}\left(x + 2y \right) = -y - 2x \Rightarrow \frac{dy}{dx} = -\frac{\left(y + 2x \right)}{2y + x}

Logo, igualando-se ao que obtivemos em [1], teremos:

\frac{dy}{dx} = -\frac{\left(y + 2x \right)}{2y + x} = 1 \Rightarrow -(y + 2x) = 2y + x \Rightarrow -3y = 3x

\Rightarrow y = -x

Que é a equação que procurávamos.


\blacksquare
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 385
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}