por Raphaelphtp » Ter Dez 20, 2016 10:15
Uma rede de água potável ligará uma central de abastecimento situada à margem de um rio de 500 metros de
largura a um conjunto habitacional situado na outra margem do rio, 2000 metros abaixo da central. O custo da obra
através do rio é de R$640,00 por metro, enquanto, em terra, custa R$312,00. Qual é a forma mais econômica de se
instalar a rede de água potável?
A.( ) 259,17metros abaixo da central de abastecimento.
B.( ) 249,17metros abaixo da central de abastecimento.
C.( ) 279,17metros abaixo da central de abastecimento.
D.( ) 219,17metros abaixo da central de abastecimento.
Não estou conseguindo montar a equação para então derivar, alguém poderia me ajudar?
-
Raphaelphtp
- Usuário Ativo

-
- Mensagens: 11
- Registrado em: Ter Dez 20, 2016 10:12
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura Matemática
- Andamento: formado
por adauto martins » Sex Dez 23, 2016 15:48
o caminho sera uma linha reta ate um ponto
![x\in [0,2000] x\in [0,2000]](/latexrender/pictures/44953778ab26c40a9df2eab87c412107.png)
e depois cruzando o rio em diagonal ate o bairro...
logo,a equaçao do custo sera dada por:
![c(x)=312.(2000-x)+640.\sqrt[]{({500}^{2}-{x}^{2}}
c'(x)=-312-(1/2)2x/(\sqrt[]{{500}^{2}-{x}^{2}})=0... c(x)=312.(2000-x)+640.\sqrt[]{({500}^{2}-{x}^{2}}
c'(x)=-312-(1/2)2x/(\sqrt[]{{500}^{2}-{x}^{2}})=0...](/latexrender/pictures/088243e92a3d09d94d506f5f37594f41.png)
...ai agora é achar x...termine-o...
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
por adauto martins » Qua Dez 28, 2016 11:30
uma pequena correçao...
eu errei o comprimento da diagonal q. é:
![\sqrt[]{({500}^{2}+{x}^{2})} \sqrt[]{({500}^{2}+{x}^{2})}](/latexrender/pictures/fee5c0905c1484086d6fe2242612ab48.png)
,logo:
![c(x)=312.(2000-x)+640.\sqrt[]{({500}^{2}+{x}^{2})} c(x)=312.(2000-x)+640.\sqrt[]{({500}^{2}+{x}^{2})}](/latexrender/pictures/8ff9d6ee186fba389780d09b0db7c254.png)
![c'(x)=-312+640x/(\sqrt[]{({500}^{2}+{x}^{2})}=0 c'(x)=-312+640x/(\sqrt[]{({500}^{2}+{x}^{2})}=0](/latexrender/pictures/d3d587f879558b493c8055b1d9e689d2.png)
![\Rightarrow 640x/(\sqrt[]{({500}^{2}+{x}^{2})}=312...{500}^{2}+{x}^{2}=(640/312)^{2}.{x}^{2}... \Rightarrow 640x/(\sqrt[]{({500}^{2}+{x}^{2})}=312...{500}^{2}+{x}^{2}=(640/312)^{2}.{x}^{2}...](/latexrender/pictures/70da58359da8be2dd55363dae96fbd80.png)
![x=\sqrt[]{{500}^{2}/3.2}\approx 279.05 x=\sqrt[]{{500}^{2}/3.2}\approx 279.05](/latexrender/pictures/6018b36139f3672286fd82632583139d.png)
...obrigado
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
por Raphaelphtp » Qua Dez 28, 2016 12:14
Obrigado!
-
Raphaelphtp
- Usuário Ativo

-
- Mensagens: 11
- Registrado em: Ter Dez 20, 2016 10:12
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura Matemática
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- montar função apartir de um ploblema
por adrianoskte » Seg Fev 09, 2015 10:58
- 1 Respostas
- 2021 Exibições
- Última mensagem por Russman

Seg Fev 09, 2015 15:27
Funções
-
- resolver problema funçao,não consigo montar,nem começar.
por [mariafernanda] » Qua Set 28, 2011 01:04
- 1 Respostas
- 1954 Exibições
- Última mensagem por Neperiano

Qua Set 28, 2011 15:18
Funções
-
- ajuda por favor
por zeramalho2004 » Dom Abr 05, 2009 21:31
- 3 Respostas
- 8501 Exibições
- Última mensagem por zeramalho2004

Seg Abr 06, 2009 10:25
Logaritmos
-
- ajuda por favor !!!
por Moacir » Qui Ago 27, 2009 00:19
- 2 Respostas
- 2602 Exibições
- Última mensagem por Moacir

Qui Ago 27, 2009 17:30
Funções
-
- Ajuda Por favor
por Sandy26 » Sex Abr 23, 2010 14:12
- 12 Respostas
- 6675 Exibições
- Última mensagem por MarceloFantini

Qui Abr 29, 2010 17:57
Logaritmos
Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.