por Jadiel Carlos » Qua Nov 23, 2016 01:16
Olá pessoal... estava estudando exemplos de espaços topológicos, em particular os espaços métricos. Fiquei com a seguinte curiosidade: Um exemplo de espaço topológico que não seja espaço espaço métrico. Se alguém souber, já agradeço.
-
Jadiel Carlos
- Usuário Ativo

-
- Mensagens: 12
- Registrado em: Seg Nov 07, 2016 00:28
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em matematica
- Andamento: cursando
por adauto martins » Qua Nov 23, 2016 19:12

,tal que

...

é topologico,mas nao metrico,pois:
dados

,nem sempre podemos ter:

-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
por Jadiel Carlos » Qui Nov 24, 2016 01:10
Olá Adauto Martins, acabei de observar a resposta e entendi que vc quis dizer que o

é espaço topológico mas não é espaço métrico, pois aquela função d(x, y) não caracteriza uma métrica. Agora a minha duvida tá em saber se essa mesma função d( x, y) é que fornece os abertos da topologia de

?
-
Jadiel Carlos
- Usuário Ativo

-
- Mensagens: 12
- Registrado em: Seg Nov 07, 2016 00:28
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em matematica
- Andamento: cursando
por adauto martins » Qui Nov 24, 2016 12:34
meu caro colega,

é espaço metrico dependendo da metrica

...
a metrica dada por mim,nao cumpre a condiçao da desiqualdade treiangular...
existem muitas metricas em

,tais como:
![d(x,y)=\left|x-y \right|...d={x}^{2}+{y}^{2}...d=\left|{x}^{2}-{y}^{2} \right|...d=\sqrt[]{{x}^{2}+{y}^{2}}(mostre-as!)..etc... d(x,y)=\left|x-y \right|...d={x}^{2}+{y}^{2}...d=\left|{x}^{2}-{y}^{2} \right|...d=\sqrt[]{{x}^{2}+{y}^{2}}(mostre-as!)..etc...](/latexrender/pictures/25f8be7cac72f2847dc43ade7645d25b.png)
...
uma metrica pode ser um caminho,uma curva,uma reta etc...desde q. satisfaça as condiçoes de metrica,tanto em abertos como fechados...
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
por Jadiel Carlos » Qui Nov 24, 2016 13:23
Agora entendi amigo. Essa curiosidade surgiu quando eu vi a seguinte afirmação: Todo espaço métrico é espaço topológico. Valeu... Entendi agora.
-
Jadiel Carlos
- Usuário Ativo

-
- Mensagens: 12
- Registrado em: Seg Nov 07, 2016 00:28
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em matematica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.