por carolzinhag3 » Seg Out 03, 2016 19:43
Encontre as equações para as retas tangentes a elipse
![\[\frac{x^2}{4}+ y^2 =1\] \[\frac{x^2}{4}+ y^2 =1\]](/latexrender/pictures/82d830dfd642647883110410fa1bf1b6.png)
e passam pelo ponto (0,2)
*Se puderem explicar de forma detalhada, ficarei grata.
-
carolzinhag3
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Dom Mai 01, 2016 23:00
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por adauto martins » Sex Jan 06, 2017 15:18
eq.reta tangente:

vamos achar o coeficiente angular que é dado pela derivada da funçao no ponto especificado,ou seja:


no ponto especificado

para efeito de exemplo vamos tomar o ponto

-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- equação reta tangente
por ezidia51 » Dom Ago 26, 2018 17:03
- 3 Respostas
- 4713 Exibições
- Última mensagem por Gebe

Dom Ago 26, 2018 19:52
Funções
-
- Equação da reta tangente
por Cleyson007 » Ter Set 25, 2012 16:17
- 2 Respostas
- 5407 Exibições
- Última mensagem por Russman

Ter Set 25, 2012 21:21
Cálculo: Limites, Derivadas e Integrais
-
- Equação da Reta Tangente
por Saturnino Nataniel » Ter Nov 06, 2012 21:42
- 1 Respostas
- 1919 Exibições
- Última mensagem por e8group

Qua Nov 14, 2012 10:27
Cálculo: Limites, Derivadas e Integrais
-
- [Equação da reta Tangente] derivadas
por lucasdemirand » Qua Ago 07, 2013 00:28
- 1 Respostas
- 2008 Exibições
- Última mensagem por young_jedi

Qua Ago 07, 2013 20:12
Cálculo: Limites, Derivadas e Integrais
-
- Achar a Equação de uma reta tangente
por Gabriela Amaral » Dom Set 10, 2017 13:41
- 1 Respostas
- 3042 Exibições
- Última mensagem por Gabriela Amaral

Dom Set 10, 2017 18:47
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.