por adauto martins » Ter Jun 28, 2016 11:05
mostre q. a direçao do gradiente de uma funçao

,onde

é um espaço vetorial sobre um corpo

é dado por:

,onde

sao derivadas parcias e

um angulo do circulo trigonometrico.
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
por adauto martins » Ter Jun 28, 2016 14:54
uma correçao:

-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
por e8group » Dom Jul 03, 2016 21:06
Olá pelo que eu sei o conceito de gradiente se restringem as aplicações escalares (i.e. , funções definidas num aberto (ou subconjuntos mais gerais de )

valorada em K , onde K pode ser tanto os reais quanto os complexos .. Não pode ser um corpo arbitrário , se não cai no problema de não ter ponto acumulação .. Pensa num negocio esquisito como

etc .. ) .. Para falar de ângulo é preciso ter produto interno então qm sabe há uma generalização para Hilbert spaces .. para aplicações entre espaços de Banach (podendo ser não completo contitua fazendo sentido ) a noção de derivada num ponto faz sentido , mas agora será uma transformação afim que melhror aproxima a função perto do ponto ... De forma análoga , a noção de derivada parcial faz sentido para função entre espaços normados só que agora o espaço precisa ser decomposto como soma direta para introduzir tal definição ..
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por adauto martins » Seg Jul 04, 2016 10:56
caro santiago,
vc estuda matematica?ou...?...
pelo visto como te disse a um tempo atras,e creio vc verificou,vc tira matematica nao sei de onde?desculpe-me...mas vc tem q. rever seus estudos de matematica...
gradiente é uma funçao vetrorial q.indica a direçao de maior crescimento de uma superficie(isso no caso de tratarmos de funçao no plano ou espaço)...o valor do gradiente é escalar,ai sim...procure rever seus conceitos,em especial de produto interno de espaços,ou espaços vetoriais finitos com produto interno e etc...
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
por e8group » Seg Jul 04, 2016 12:56
Olá , convenhamos , quem precisar rever seus conceitos é vc ! Pegue um bom livro de analise matemática e veja a def. de gradiente ou bom livros de calculus no R^n ..
Dada uma função (escalar)

.. Se

for ponto de acumulação de

e as derivadas parciais de f (que vou denotar-lás por

, como uma notação sugestiva para a generalização , para espaços mais gerais até de dim infinita ) .. Define-se então o vetor

.. Agora , se U for aberto , todos os ponto dele serão de acumulação [Bom exercício ! Se não fez , faça ] , e se todas derivadas parciais de f existirem em todos pontos de U , a correspondência

define uma função (vetorial )

.
Lembrando que a notação grad não é universal ..
Engraçado que a definição acima não condiz com seu argumento
"... o valor do gradiente é escalar,ai sim...procure rever seus conceitos,em especial de produto interno de espaços,ou espaços vetoriais finitos com produto interno e etc... "
Agora , há uma noção muito boa de diferenciabilidade para funções entre
espaços normados (não necessariamente de dimensão finita ) , so que agora a derivada de desta função em um ponto não será mais um número , e sim uma transformação linear chamada Fréchet derivada ..
Veja aqui :
https://en.wikipedia.org/wiki/Fr%C3%A9chet_derivative Observe que lá exige mais um pouco ainda que o espaço normado seja completo (no seq de cauch nele é convergente ) , i.e, que els seja um Banach space .. Isto é meramente por razões técnicas para fazer teoria com tal def ...
Pesquisando e ampliando os horizontes ... Verá que não só tem uma verão de analise calculo ODE PDE em espaço Banacch como em variedades diferenciáveis ..
Variedades diferenciavesi são mt importantes e aparece em mts problemas de sistemas dinamicos ..
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por adauto martins » Seg Jul 04, 2016 16:21
blabla,blabla santiago...
estude matematica mesmo e pare de copiar do wiki,ou livros q. vc nao entende nada...
primeiramente um espaço vetorial e definido sobre um corpo...vc cita

,q. nao é corpo,é grupo...
o menor corpo é

(prove isso!se vc entender ne)...nao direi nada sobre espaços de banach,hilbert q. ne,se vc nao sabe o q. é um espaço vetorial?entao...
melhor vamos a sol.:
vou considerar

,somente pra efeito de sintese,de ilustraçao,depois ,uma outra hora faço p/(

)...
como sabemos o vetor gradiente é sempre perpendicular a curva de nivel,no caso

...qquer ponto dessa curva é dado pelo vetor posiçao(x,y),cujo unitario pode ser dado por

,logo

,onde

é o vetor gradiente...logo,



,como a funçao arctg é uma funçao impar(prove isso!se entender)

...cqd...
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
por e8group » Seg Jul 04, 2016 17:33
Seu post só mostrar o quanto vc é ignorante e não tem se quer a humildade .. Meu caro , para ser um bom matemático pesquisador , primeiro vc precisa de uma boa base , para fazer matemática do século 21 ... Mas para isso isso não vem do nada .. E é preciso estudar toda a matemática que já estar ai a séculos ...
adauto martins escreveu:blabla,blabla santiago...
estude matematica mesmo e pare de copiar do wiki,ou livros q. vc nao entende nada...
primeiramente um espaço vetorial e definido sobre um corpo...vc cita {z}_{5},q. nao é corpo,é grupo...
Tem certeza ? Acho que vc precisa estudar mais álgebra abstrata ...
E mesmo se vc apenas um anel ... Os elementos deste anel poderia fazer os papel dos escalares (em um corpo ) oq exatamente a ideia da teoria de modules ..

é corpo sim ! Na verdade

é corpo se e seomente

é primo !
E ainda qualquer domínio de integridade
finito é um corpo ...
Humildade cara é bom ...
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por adauto martins » Seg Jul 04, 2016 18:50
ai é so isso q. vc tem,entao nao perderei meu tempo com vc...vai estudar matematica,matematica mesmo...
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [P.A.] Exercício
por Cleyson007 » Dom Mai 25, 2008 13:02
- 1 Respostas
- 6387 Exibições
- Última mensagem por admin

Dom Mai 25, 2008 13:20
Progressões
-
- Exercício de PA
por Cleyson007 » Dom Jun 01, 2008 02:45
- 1 Respostas
- 11106 Exibições
- Última mensagem por admin

Dom Jun 01, 2008 14:31
Progressões
-
- Exercício de PA e PG
por Cleyson007 » Sáb Jun 14, 2008 01:21
- 3 Respostas
- 15057 Exibições
- Última mensagem por DanielFerreira

Sex Jul 24, 2009 11:59
Progressões
-
- exercicio de P.G.
por Gir » Qui Jul 02, 2009 18:21
- 3 Respostas
- 4207 Exibições
- Última mensagem por Gir

Sex Jul 03, 2009 10:12
Progressões
-
- exercicio de P.G.
por Gir » Seg Jul 06, 2009 10:54
- 1 Respostas
- 3206 Exibições
- Última mensagem por Marcampucio

Seg Jul 06, 2009 16:33
Progressões
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.