por Huovi » Sáb Abr 09, 2016 00:15
Como eu resolvo o lim x->1 (?x - 1)/(1 - x^1/3) ? Simplesmente não consigo fazer. O step by step do wolfram também não me ajudou em nada. Help pliz D:
-
Huovi
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Sáb Abr 09, 2016 00:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia da Computação
- Andamento: cursando
por DanielFerreira » Dom Abr 10, 2016 10:35
Huovi escreveu:Como eu resolvo o
![\lim_{x \to 1} \frac{\sqrt{x} - 1}{1 - \sqrt[3]{x}} \lim_{x \to 1} \frac{\sqrt{x} - 1}{1 - \sqrt[3]{x}}](/latexrender/pictures/b4a852b91dcd5a0994ce145d8c8a36da.png)
? Simplesmente não consigo fazer. O step by step do wolfram também não me ajudou em nada. Help pliz D:
Olá
Huovi, seja bem-vindo(a)!
Nesses limites devemos encontrar uma maneira de cancelar o fator que anula o denominador. Fazemos isso multiplicando-o pelo seu "conjugado".
Outro ponto a destacar é a fatoração. Note que

, por conseguinte
![(1 - x) = (1 - \sqrt[3]{x})(1 + \sqrt[3]{x} + \sqrt[3]{x^2}) (1 - x) = (1 - \sqrt[3]{x})(1 + \sqrt[3]{x} + \sqrt[3]{x^2})](/latexrender/pictures/21e3c21fc695982f70a4b0ddba7f6a00.png)
.
Daí,
![\\ \lim_{x \to 1} \frac{\sqrt{x} - 1}{1 - \sqrt[3]{x}} = \\\\\\ \lim_{x \to 1} \frac{\sqrt{x} - 1}{1 - \sqrt[3]{x}} \times \frac{(\sqrt{x} + 1)}{\sqrt{x} + 1} \times \frac{(1 + \sqrt[3]{x} + \sqrt[3]{x^2})}{(1 + \sqrt[3]{x} + \sqrt[3]{x^2})} = \\\\\\ \lim_{x \to 1} \frac{(x - 1)(1 + \sqrt[3]{x} + \sqrt[3]{x^2})}{(1 - x)(\sqrt{x} + 1)} = \\\\\\ \lim_{x \to 1} \frac{\cancel{(x - 1)}(1 + \sqrt[3]{x} + \sqrt[3]{x^2})}{- \cancel{(x - 1)}(\sqrt{x} + 1)} = \\\\\\ \lim_{x \to 1} \frac{(1 + \sqrt[3]{x} + \sqrt[3]{x^2})}{- (\sqrt{x} + 1)} = \\\\\\ \frac{1 + 1 + 1}{- (1 + 1)} = \\\\\\ \boxed{- \frac{3}{2}} \\ \lim_{x \to 1} \frac{\sqrt{x} - 1}{1 - \sqrt[3]{x}} = \\\\\\ \lim_{x \to 1} \frac{\sqrt{x} - 1}{1 - \sqrt[3]{x}} \times \frac{(\sqrt{x} + 1)}{\sqrt{x} + 1} \times \frac{(1 + \sqrt[3]{x} + \sqrt[3]{x^2})}{(1 + \sqrt[3]{x} + \sqrt[3]{x^2})} = \\\\\\ \lim_{x \to 1} \frac{(x - 1)(1 + \sqrt[3]{x} + \sqrt[3]{x^2})}{(1 - x)(\sqrt{x} + 1)} = \\\\\\ \lim_{x \to 1} \frac{\cancel{(x - 1)}(1 + \sqrt[3]{x} + \sqrt[3]{x^2})}{- \cancel{(x - 1)}(\sqrt{x} + 1)} = \\\\\\ \lim_{x \to 1} \frac{(1 + \sqrt[3]{x} + \sqrt[3]{x^2})}{- (\sqrt{x} + 1)} = \\\\\\ \frac{1 + 1 + 1}{- (1 + 1)} = \\\\\\ \boxed{- \frac{3}{2}}](/latexrender/pictures/356d8dc301fca65965aba996fa730826.png)
Espero ter ajudado!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por Huovi » Dom Abr 10, 2016 17:40
Obrigada

só mais uma pergunta, por que multiplicou apenas o denominador por -1? não deveria ter multiplicado a fração toda não?
-
Huovi
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Sáb Abr 09, 2016 00:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia da Computação
- Andamento: cursando
por DanielFerreira » Dom Abr 10, 2016 20:22
Não multipliquei por

. O que fiz foi o seguinte:

"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por Huovi » Dom Abr 24, 2016 01:12
Ahhhh, agora entendi. Agradeço

-
Huovi
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Sáb Abr 09, 2016 00:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia da Computação
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [LIMITE] limites no infinito com raízes
por camila_braz » Dom Jun 11, 2017 11:42
- 0 Respostas
- 2959 Exibições
- Última mensagem por camila_braz

Dom Jun 11, 2017 11:42
Cálculo: Limites, Derivadas e Integrais
-
- [LIMITE] Limites que tendem ao infinito com raízes
por Mell » Qua Mai 01, 2013 15:21
- 3 Respostas
- 2721 Exibições
- Última mensagem por e8group

Sáb Mai 04, 2013 02:41
Cálculo: Limites, Derivadas e Integrais
-
- [LIMITE] Limites com raízes e zerando numerador/denominador
por renataoalves » Ter Set 16, 2014 17:14
- 1 Respostas
- 3608 Exibições
- Última mensagem por jcmatematica

Qui Set 25, 2014 23:14
Cálculo: Limites, Derivadas e Integrais
-
- [LIMITES] Limites com duas raízes
por Atom » Dom Mai 25, 2014 20:22
- 1 Respostas
- 1953 Exibições
- Última mensagem por e8group

Dom Mai 25, 2014 21:59
Cálculo: Limites, Derivadas e Integrais
-
- Limites, conjugado de raizes
por moyses » Qui Out 06, 2011 12:16
- 19 Respostas
- 25106 Exibições
- Última mensagem por LuizAquino

Dom Out 09, 2011 19:16
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.