• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral] Integração por partes

[Integral] Integração por partes

Mensagempor bencz » Sex Abr 22, 2016 16:18

Boa tarde!
Estou empacado em um exercício, que eu não tenho a menor ideia de como se resolve, alguém pode me ajudar a resolver ele, ou, me explicar como resolver. ?
O exercício é:

Suponha que g tenha derivada contínua em [0,+\infty[ e que g(0) = 0. Verifique que
\int_{0}^{x}g'(t) e^{-st}dt = g(x)e^{-sx}+s \int_{0}^{x} g(t) e^{-st}dt


Agradeço a ajuda! :)
bencz
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qui Jul 14, 2011 00:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Integral] Integração por partes

Mensagempor nakagumahissao » Sáb Abr 23, 2016 23:33

Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 386
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?